/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.functions.neuralnet;
import com.rapidminer.example.Example;
/**
* This function represents a sigmoid activation function by calculating
* 1 / (1 + exp(- weighted sum). The sigmoid function is usually used for
* the input and hidden layers and for the output layer for classification
* problems.
*
* @author Ingo Mierswa
*/
public class SigmoidFunction extends ActivationFunction {
private static final long serialVersionUID = 1L;
@Override
public String getTypeName() {
return "Sigmoid";
}
@Override
public double calculateValue(InnerNode node, Example example) {
Node[] inputs = node.getInputNodes();
double[] weights = node.getWeights();
double weightedSum = weights[0]; // bias
for (int i = 0; i < inputs.length; i++) {
weightedSum += inputs[i].calculateValue(true, example) * weights[i + 1];
}
double result = 0.0d;
if (weightedSum < -45.0d) {
result = 0;
} else if (weightedSum > 45.0d) {
result = 1;
} else {
result = 1 / (1 + Math.exp(-1 * weightedSum));
}
return result;
}
@Override
public double calculateError(InnerNode node, Example example) {
Node[] outputs = node.getOutputNodes();
int[] numberOfOutputs = node.getOutputNodeInputIndices();
double errorSum = 0;
for (int i = 0; i < outputs.length; i++) {
errorSum += outputs[i].calculateError(true, example) * outputs[i].getWeight(numberOfOutputs[i]);
}
double value = node.calculateValue(false, example);
return errorSum * value * (1 - value);
}
}