/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.functions.kernel;
import com.rapidminer.datatable.DataTable;
import com.rapidminer.datatable.SimpleDataTable;
import com.rapidminer.datatable.SimpleDataTableRow;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.learner.PredictionModel;
import com.rapidminer.tools.Tools;
/** This is the abstract model class for all kernel models. This class actually only provide
* a common interface for plotting SVM and other kernel method models.
*
* @author Ingo Mierswa
*/
public abstract class KernelModel extends PredictionModel {
private static final long serialVersionUID = 7480153570564620067L;
private String[] attributeConstructions;
public KernelModel(ExampleSet exampleSet) {
super(exampleSet);
this.attributeConstructions = com.rapidminer.example.Tools.getRegularAttributeConstructions(exampleSet);
}
public abstract double getBias();
public abstract double getAlpha(int index);
public abstract double getFunctionValue(int index);
public abstract boolean isClassificationModel();
public abstract String getClassificationLabel(int index);
public abstract double getRegressionLabel(int index);
public abstract String getId(int index);
public abstract SupportVector getSupportVector(int index);
public abstract int getNumberOfSupportVectors();
public abstract int getNumberOfAttributes();
public abstract double getAttributeValue(int exampleIndex, int attributeIndex);
public String[] getAttributeConstructions() {
return this.attributeConstructions;
}
/** The default implementation returns the classname without package. */
@Override
public String getName() {
return "Kernel Model";
}
/** Returns a string representation of this model. */
@Override
public String toString() {
String[] attributeNames = com.rapidminer.example.Tools.getRegularAttributeNames(getTrainingHeader());
StringBuffer result = new StringBuffer();
result.append("Total number of Support Vectors: " + getNumberOfSupportVectors() + Tools.getLineSeparator());
result.append("Bias (offset): " + Tools.formatNumber(getBias()) + Tools.getLineSeparators(2));
if ((!getLabel().isNominal()) || (getLabel().getMapping().size() == 2)) {
double[] w = new double[getNumberOfAttributes()];
boolean showWeights = true;
for (int i = 0; i < getNumberOfSupportVectors(); i++) {
SupportVector sv = getSupportVector(i);
if (sv != null) {
double[] x = sv.getX();
double alpha = sv.getAlpha();
double y = sv.getY();
for (int j = 0; j < w.length; j++) {
w[j] += y * alpha * x[j];
}
} else {
showWeights = false;
}
}
if (showWeights) {
for (int j = 0; j < w.length; j++) {
result.append("w[" + attributeNames[j] + (!attributeNames[j].equals(attributeConstructions[j])? " = " + attributeConstructions[j] : "")+ "] = " + Tools.formatNumber(w[j]) + Tools.getLineSeparator());
}
}
} else {
result.append("Feature weight calculation only possible for two class learning problems."+Tools.getLineSeparator()+"Please use the operator SVMWeighting instead." + Tools.getLineSeparator());
}
return result.toString();
}
public DataTable createWeightsTable() {
String[] attributeNames = com.rapidminer.example.Tools.getRegularAttributeNames(getTrainingHeader());
SimpleDataTable weightTable = new SimpleDataTable("Kernel Model Weights", new String[] { "Attribute", "Weight" } );
if ((!getLabel().isNominal()) || (getLabel().getMapping().size() == 2)) {
double[] w = new double[getNumberOfAttributes()];
boolean showWeights = true;
for (int i = 0; i < getNumberOfSupportVectors(); i++) {
SupportVector sv = getSupportVector(i);
if (sv != null) {
double[] x = sv.getX();
double alpha = sv.getAlpha();
double y = sv.getY();
for (int j = 0; j < w.length; j++) {
w[j] += y * alpha * x[j];
}
} else {
showWeights = false;
}
}
if (showWeights) {
for (int j = 0; j < w.length; j++) {
int nameIndex = weightTable.mapString(0, attributeNames[j]);
weightTable.add(new SimpleDataTableRow(new double[] { nameIndex, w[j]}));
}
return weightTable;
} else {
return null;
}
} else {
return null;
}
}
}