/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.tools.math.optimization.ec.es;
import java.util.LinkedList;
import java.util.List;
import java.util.Random;
/**
* Changes the values by adding a gaussian distribution multiplied with the
* current variance. Clips the value range to [min,max].
*
* @author Ingo Mierswa
*/
public class GaussianMutation implements Mutation {
private double[] sigma;
private double[] min, max;
private OptimizationValueType[] valueTypes;
private Random random;
public GaussianMutation(double[] sigma, double[] min, double[] max, OptimizationValueType[] valueTypes, Random random) {
this.sigma = sigma;
this.min = min;
this.max = max;
this.valueTypes = valueTypes;
this.random = random;
}
public void setSigma(double[] sigma) {
this.sigma = sigma;
}
public double[] getSigma() {
return this.sigma;
}
public void setValueType(int index, OptimizationValueType type) {
this.valueTypes[index] = type;
}
public void operate(Population population) {
List<Individual> newIndividuals = new LinkedList<Individual>();
for (int i = 0; i < population.getNumberOfIndividuals(); i++) {
Individual clone = (Individual) population.get(i).clone();
double[] values = clone.getValues();
for (int j = 0; j < values.length; j++) {
if (valueTypes[j].equals(OptimizationValueType.VALUE_TYPE_INT)) {
values[j] += random.nextGaussian() * sigma[j];
values[j] = (int)Math.round(values[j]);
} else if (valueTypes[j].equals(OptimizationValueType.VALUE_TYPE_BOUNDS)) {
if (random.nextDouble() < 1.0d / values.length) {
if (values[j] >= (max[j] - min[j]) / 2.0d) {
values[j] = min[j];
} else {
values[j] = max[j];
}
}
} else {
values[j] += random.nextGaussian() * sigma[j];
}
if (values[j] < min[j])
values[j] = min[j];
if (values[j] > max[j])
values[j] = max[j];
}
clone.setValues(values);
newIndividuals.add(clone);
}
population.addAll(newIndividuals);
}
}