/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.bayes;
import java.util.List;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.Model;
import com.rapidminer.operator.OperatorCapability;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.annotation.ResourceConsumptionEstimator;
import com.rapidminer.operator.learner.AbstractLearner;
import com.rapidminer.operator.learner.PredictionModel;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeBoolean;
import com.rapidminer.tools.OperatorResourceConsumptionHandler;
/**
* Naive Bayes learner.
*
* @author Tobias Malbrecht
*/
public class NaiveBayes extends AbstractLearner {
public static final String PARAMETER_LAPLACE_CORRECTION = "laplace_correction";
public NaiveBayes(OperatorDescription description) {
super(description);
}
public Model learn(ExampleSet exampleSet) throws OperatorException {
return new SimpleDistributionModel(exampleSet, getParameterAsBoolean(PARAMETER_LAPLACE_CORRECTION));
}
@Override
public Class<? extends PredictionModel> getModelClass() {
return DistributionModel.class;
}
public boolean supportsCapability(OperatorCapability lc) {
switch (lc) {
case POLYNOMINAL_ATTRIBUTES:
case BINOMINAL_ATTRIBUTES:
case NUMERICAL_ATTRIBUTES:
case POLYNOMINAL_LABEL:
case BINOMINAL_LABEL:
case WEIGHTED_EXAMPLES:
case UPDATABLE:
case MISSING_VALUES:
return true;
default:
return false;
}
}
@Override
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = super.getParameterTypes();
ParameterType type = new ParameterTypeBoolean(PARAMETER_LAPLACE_CORRECTION, "Use Laplace correction to prevent high influence of zero probabilities.", true, false);
type.setExpert(true);
types.add(type);
return types;
}
@Override
public ResourceConsumptionEstimator getResourceConsumptionEstimator() {
return OperatorResourceConsumptionHandler.getResourceConsumptionEstimator(getExampleSetInputPort(), NaiveBayes.class, null);
}
}