/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.tree.criterions;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.learner.tree.FrequencyCalculator;
/**
* Calculates the Gini index for the given split.
*
* @author Ingo Mierswa
*/
public class GiniIndexCriterion extends AbstractCriterion {
private FrequencyCalculator frequencyCalculator = new FrequencyCalculator();
public double getNominalBenefit(ExampleSet exampleSet, Attribute attribute) {
double[][] weightCounts = frequencyCalculator.getNominalWeightCounts(exampleSet, attribute);
return getBenefit(weightCounts);
}
public double getNumericalBenefit(ExampleSet exampleSet, Attribute attribute, double splitValue) {
double[][] weightCounts = frequencyCalculator.getNumericalWeightCounts(exampleSet, attribute, splitValue);
return getBenefit(weightCounts);
}
public double getBenefit(double[][] weightCounts) {
// calculate information amount WITHOUT this attribute
double[] classWeights = new double[weightCounts[0].length];
for (int l = 0; l < classWeights.length; l++) {
for (int v = 0; v < weightCounts.length; v++) {
classWeights[l] += weightCounts[v][l];
}
}
double totalClassWeight = frequencyCalculator.getTotalWeight(classWeights);
double totalEntropy = getGiniIndex(classWeights, totalClassWeight);
double gain = 0;
for (int v = 0; v < weightCounts.length; v++) {
double[] partitionWeights = weightCounts[v];
double partitionWeight = frequencyCalculator.getTotalWeight(partitionWeights);
gain += getGiniIndex(partitionWeights, partitionWeight) * partitionWeight / totalClassWeight;
}
return totalEntropy - gain;
}
private double getGiniIndex(double[] labelWeights, double totalWeight) {
double sum = 0.0d;
for (int i = 0; i < labelWeights.length; i++) {
double frequency = labelWeights[i] / totalWeight;
sum += frequency * frequency;
}
return 1.0d - sum;
}
@Override
public boolean supportsIncrementalCalculation() {
return true;
}
@Override
public double getIncrementalBenefit() {
double totalGiniEntropy = getGiniIndex(totalLabelWeights, totalWeight);
double gain = getGiniIndex(leftLabelWeights, leftWeight) * leftWeight / totalWeight;
gain += getGiniIndex(rightLabelWeights, rightWeight) * rightWeight / totalWeight;
return totalGiniEntropy - gain;
}
}