/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.performance.cost;
import java.util.HashMap;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.Attributes;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.performance.MeasuredPerformance;
import com.rapidminer.tools.math.Averagable;
/**
* This performance Criterion works with given ranking costs.
* If the real class is on the x-th rank of confidences, the
* costs given for that rank are added.
*
* @author Sebastian Land
*/
public class RankingCriterion extends MeasuredPerformance {
private static final long serialVersionUID = -7466139591781285005L;
private double costs;
private Attribute label;
private Attribute[] confidenceAttributes;
private double exampleCount;
private int[] rankIntervallStarts;
private double[] rankIntervallCost;
private HashMap<String, Integer> confidenceAttributesMap = new HashMap<String, Integer>();
public RankingCriterion(int[] rankIntervallStarts, double[] rankIntervallCost, ExampleSet exampleSet) {
label = exampleSet.getAttributes().getLabel();
this.rankIntervallStarts = rankIntervallStarts;
this.rankIntervallCost = rankIntervallCost;
confidenceAttributes = new Attribute[label.getMapping().size()];
int i = 0;
for (String labelValue: label.getMapping().getValues()) {
confidenceAttributes[i] = exampleSet.getAttributes().getSpecial(Attributes.CONFIDENCE_NAME + "_" + labelValue);
confidenceAttributesMap.put(labelValue, i);
i++;
}
costs = 0;
}
@Override
public String getDescription() {
return "This Criterion delievers the ranking costs";
}
@Override
public String getName() {
return "RankingCosts";
}
@Override
public void countExample(Example example) {
// finding current rank
int indexOfCorrect = confidenceAttributesMap.get(example.getNominalValue(label));
double confidenceOfCorrect = example.getValue(confidenceAttributes[indexOfCorrect]);
int rank = 0;
for (int i = 0; i < confidenceAttributes.length; i++) {
double currentConfidence = example.getValue(confidenceAttributes[i]);
if (currentConfidence > confidenceOfCorrect) {
rank++;
}
}
// getting costs for rank
int intervallIndex = 0;
while (intervallIndex < rankIntervallStarts.length - 1 && rankIntervallStarts[intervallIndex + 1] <= rank) {
intervallIndex++;
}
if (rank >= rankIntervallStarts[0]) {
// otherwise not defined costs: Assume 0
costs += rankIntervallCost[intervallIndex];
}
exampleCount ++;
}
@Override
public double getExampleCount() {
return exampleCount;
}
@Override
public double getFitness() {
return -costs;
}
@Override
protected void buildSingleAverage(Averagable averagable) {
}
@Override
public double getMikroAverage() {
return costs / exampleCount;
}
@Override
public double getMikroVariance() {
return 0;
}
}