/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.visualization.dependencies;
import Jama.Matrix;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.ProcessSetupError.Severity;
import com.rapidminer.operator.ports.InputPort;
import com.rapidminer.operator.ports.OutputPort;
import com.rapidminer.operator.ports.metadata.AttributeMetaData;
import com.rapidminer.operator.ports.metadata.ExampleSetMetaData;
import com.rapidminer.operator.ports.metadata.ExampleSetPrecondition;
import com.rapidminer.operator.ports.metadata.SimpleMetaDataError;
import com.rapidminer.parameter.UndefinedParameterError;
import com.rapidminer.tools.math.matrix.CovarianceMatrix;
/** This operator calculates the covariances between all attributes
* of the input example set and returns a covariance matrix object
* which can be visualized.
*
* @author Ingo Mierswa
*/
public class CovarianceMatrixOperator extends Operator {
private InputPort exampleSetInput = getInputPorts().createPort("example set");
private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");
private OutputPort covarianceOutput = getOutputPorts().createPort("covariance");
public CovarianceMatrixOperator(OperatorDescription description) {
super(description);
exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput) {
@Override
public void makeAdditionalChecks(ExampleSetMetaData emd) throws UndefinedParameterError {
for (AttributeMetaData amd: emd.getAllAttributes()) {
if (!amd.isSpecial() && !amd.isNumerical()) {
exampleSetInput.addError(new SimpleMetaDataError(Severity.WARNING, exampleSetInput, "not_defined_on_nominal", "Covariance"));
break;
}
}
super.makeAdditionalChecks(emd);
}
});
getTransformer().addPassThroughRule(exampleSetInput, exampleSetOutput);
getTransformer().addGenerationRule(covarianceOutput, NumericalMatrix.class);
}
@Override
public void doWork() throws OperatorException {
ExampleSet exampleSet = exampleSetInput.getData(ExampleSet.class);
String[] columnNames = new String[exampleSet.getAttributes().size()];
boolean[] isNominal = new boolean[columnNames.length];
int counter = 0;
for (Attribute attribute : exampleSet.getAttributes()) {
columnNames[counter] = attribute.getName();
if (attribute.isNominal())
isNominal[counter] = true;
counter++;
}
Matrix covarianceMatrix = CovarianceMatrix.getCovarianceMatrix(exampleSet);
// setting all nominal colums on NaN
double[][] matrix = covarianceMatrix.getArray();
for (int i = 0; i < covarianceMatrix.getColumnDimension(); i++) {
for (int j = 0; j < covarianceMatrix.getRowDimension(); j++) {
if (isNominal[i] || isNominal[j])
matrix[i][j] = Double.NaN;
}
}
exampleSetOutput.deliver(exampleSet);
covarianceOutput.deliver(new NumericalMatrix("Covariance", columnNames, covarianceMatrix, true));
}
}