/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.tools.math.similarity.divergences;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.Attributes;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.example.Tools;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.tools.math.similarity.BregmanDivergence;
/**
* The "Logarithmic loss ".
*
* @author Regina Fritsch
*/
public class LogarithmicLoss extends BregmanDivergence {
private static final long serialVersionUID = 871453359959645339L;
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
if (attributes.size() != 1)
throw new OperatorException("The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
for (Example example: exampleSet) {
for (Attribute attribute: attributes) {
if (example.getValue(attribute) <= 0)
throw new OperatorException("The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");;
}
}
}
@Override
public double calculateDistance(double[] value1, double[] value2) {
return (value1[0] * Math.log(value1[0] / value2[0])) - (value1[0] - value2[0]);
}
@Override
public String toString() {
return "Logarithmic loss";
}
}