/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.tree.criterions;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.learner.tree.FrequencyCalculator;
import com.rapidminer.operator.learner.tree.MinimalGainHandler;
/**
* This criterion implements the well known information gain in
* order to calculate the benefit of a split. The information gain
* is defined as the change in entropy from a prior state to a
* state that takes some information as given by the entropy.
*
* @author Sebastian Land, Ingo Mierswa
*/
public class InfoGainCriterion extends AbstractCriterion implements MinimalGainHandler {
private static double LOG_FACTOR = 1d / Math.log(2);
private FrequencyCalculator frequencyCalculator = new FrequencyCalculator();
private double minimalGain = 0.1;
public InfoGainCriterion() {}
public InfoGainCriterion(double minimalGain) {
this.minimalGain = minimalGain;
}
public void setMinimalGain(double minimalGain) {
this.minimalGain = minimalGain;
}
public double getNominalBenefit(ExampleSet exampleSet, Attribute attribute) {
double[][] weightCounts = frequencyCalculator.getNominalWeightCounts(exampleSet, attribute);
return getBenefit(weightCounts);
}
public double getNumericalBenefit(ExampleSet exampleSet, Attribute attribute, double splitValue) {
double[][] weightCounts = frequencyCalculator.getNumericalWeightCounts(exampleSet, attribute, splitValue);
return getBenefit(weightCounts);
}
public double getBenefit(double[][] weightCounts) {
int numberOfValues = weightCounts.length;
int numberOfLabels = weightCounts[0].length;
// calculate entropies
double[] entropies = new double[numberOfValues];
double[] totalWeights = new double[numberOfValues];
for (int v = 0; v < numberOfValues; v++) {
for (int l = 0; l < numberOfLabels; l++) {
totalWeights[v] += weightCounts[v][l];
}
for (int l = 0; l < numberOfLabels; l++) {
if (weightCounts[v][l] > 0) {
double proportion = weightCounts[v][l] / totalWeights[v];
entropies[v] -= (Math.log(proportion) * LOG_FACTOR) * proportion;
}
}
}
// calculate information amount WITH this attribute
double totalWeight = 0.0d;
for (double w : totalWeights) {
totalWeight += w;
}
double information = 0.0d;
for (int v = 0; v < numberOfValues; v++) {
information += totalWeights[v] / totalWeight * entropies[v];
}
// calculate information amount WITHOUT this attribute
double[] classWeights = new double[numberOfLabels];
for (int l = 0; l < numberOfLabels; l++) {
for (int v = 0; v < numberOfValues; v++) {
classWeights[l] += weightCounts[v][l];
}
}
double totalClassWeight = 0.0d;
for (double w : classWeights) {
totalClassWeight += w;
}
double classEntropy = 0.0d;
for (int l = 0; l < numberOfLabels; l++) {
if (classWeights[l] > 0) {
double proportion = classWeights[l] / totalClassWeight;
classEntropy -= (Math.log(proportion) * LOG_FACTOR) * proportion;
}
}
// calculate and return information gain
double informationGain = classEntropy - information;
if (informationGain < minimalGain * classEntropy) {
informationGain = 0;
}
return informationGain;
}
protected double getEntropy(double[] labelWeights, double totalWeight) {
double entropy = 0;
for (int i = 0; i < labelWeights.length; i++) {
if (labelWeights[i] > 0) {
double proportion = labelWeights[i] / totalWeight;
entropy -= (Math.log(proportion) * LOG_FACTOR) * proportion;
}
}
return entropy;
}
@Override
public boolean supportsIncrementalCalculation() {
return true;
}
@Override
public double getIncrementalBenefit() {
double totalEntropy = getEntropy(totalLabelWeights, totalWeight);
double gain = getEntropy(leftLabelWeights, leftWeight) * leftWeight / totalWeight;
gain += getEntropy(rightLabelWeights, rightWeight) * rightWeight / totalWeight;
return totalEntropy - gain;
}
}