/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.tree;
import java.util.LinkedList;
import java.util.List;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.OperatorCapability;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
/**
* This operator learns decision trees without pruning using both nominal
* and numerical attributes.
* Decision trees are powerful classification methods which often can also
* easily be understood. This decision tree learner works similar to Quinlan's
* ID3.
*
* @author Ingo Mierswa
*/
public class ID3NumericalLearner extends AbstractTreeLearner {
public ID3NumericalLearner(OperatorDescription description) {
super(description);
}
@Override
public Pruner getPruner() throws OperatorException {
return null;
}
@Override
public List<Terminator> getTerminationCriteria(ExampleSet exampleSet) {
List<Terminator> result = new LinkedList<Terminator>();
result.add(new SingleLabelTermination());
result.add(new NoAttributeLeftTermination());
result.add(new EmptyTermination());
result.add(new MaxDepthTermination(exampleSet.size()));
return result;
}
public boolean supportsCapability(OperatorCapability capability) {
switch (capability) {
case BINOMINAL_ATTRIBUTES:
case POLYNOMINAL_ATTRIBUTES:
case NUMERICAL_ATTRIBUTES:
case POLYNOMINAL_LABEL:
case BINOMINAL_LABEL:
case WEIGHTED_EXAMPLES:
case MISSING_VALUES:
return true;
default:
return false;
}
}
@Override
protected TreeBuilder getTreeBuilder(ExampleSet exampleSet) throws OperatorException {
return new TreeBuilder(createCriterion(getParameterAsDouble(PARAMETER_MINIMAL_GAIN)),
getTerminationCriteria(exampleSet),
getPruner(),
getSplitPreprocessing(),
new DecisionTreeLeafCreator(),
true,
0,
getParameterAsInt(PARAMETER_MINIMAL_SIZE_FOR_SPLIT),
getParameterAsInt(PARAMETER_MINIMAL_LEAF_SIZE));
}
}