/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.visualization.dependencies;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.example.set.NonSpecialAttributesExampleSet;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorCreationException;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.UserError;
import com.rapidminer.operator.ProcessSetupError.Severity;
import com.rapidminer.operator.ports.InputPort;
import com.rapidminer.operator.ports.OutputPort;
import com.rapidminer.operator.ports.metadata.AttributeMetaData;
import com.rapidminer.operator.ports.metadata.ExampleSetMetaData;
import com.rapidminer.operator.ports.metadata.ExampleSetPrecondition;
import com.rapidminer.operator.ports.metadata.GenerateNewMDRule;
import com.rapidminer.operator.ports.metadata.PassThroughRule;
import com.rapidminer.operator.preprocessing.transformation.GroupedANOVAOperator;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeBoolean;
import com.rapidminer.parameter.ParameterTypeDouble;
import com.rapidminer.parameter.UndefinedParameterError;
import com.rapidminer.tools.OperatorService;
import com.rapidminer.tools.math.SignificanceTestResult;
/**
* <p>This operator calculates the significance of difference for the values for
* all numerical attributes depending on the groups defined by all nominal attributes.
* Please refer to the operator {@link GroupedANOVAOperator} for details of the
* calculation.</p>
*
* @author Ingo Mierswa
*/
public class ANOVAMatrixOperator extends Operator {
private InputPort exampleSetInput = getInputPorts().createPort("example set", new ExampleSetMetaData());
private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");
private OutputPort anovaOutput = getOutputPorts().createPort("anova");
public ANOVAMatrixOperator(OperatorDescription description) {
super(description);
exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput) {
@Override
public void makeAdditionalChecks(ExampleSetMetaData emd) throws UndefinedParameterError {
int numberOfNominals = 0;
for (AttributeMetaData amd: emd.getAllAttributes()) {
if (amd.isNominal())
numberOfNominals++;
}
if (numberOfNominals == 0) {
createError(Severity.WARNING, "exampleset.must_contain_nominal_attribute");
}
}
});
getTransformer().addRule(new PassThroughRule(exampleSetInput, exampleSetOutput, false));
getTransformer().addRule(new GenerateNewMDRule(anovaOutput, ANOVAMatrix.class));
}
@Override
public void doWork() throws OperatorException {
ExampleSet inputSet = exampleSetInput.getData(ExampleSet.class);
ExampleSet exampleSet = new NonSpecialAttributesExampleSet(inputSet);
// determine anova and grouping attributes
List<String> nominalAttributes = new ArrayList<String>();
List<String> numericalAttributes = new ArrayList<String>();
Iterator<Attribute> a = exampleSet.getAttributes().allAttributes();
while (a.hasNext()) {
Attribute attribute = a.next();
if (attribute.isNominal())
nominalAttributes.add(attribute.getName());
else if (attribute.isNumerical())
numericalAttributes.add(attribute.getName());
}
// init "inner" operator
GroupedANOVAOperator groupedAnovaOperator = null;
try {
groupedAnovaOperator = OperatorService.createOperator(GroupedANOVAOperator.class);
} catch (OperatorCreationException e) {
throw new UserError(this, 109, GroupedANOVAOperator.class.getName());
}
double significanceLevel = getParameterAsDouble(GroupedANOVAOperator.PARAMETER_SIGNIFICANCE_LEVEL);
groupedAnovaOperator.setParameter(GroupedANOVAOperator.PARAMETER_SIGNIFICANCE_LEVEL, significanceLevel + "");
groupedAnovaOperator.setParameter(GroupedANOVAOperator.PARAMETER_ONLY_DISTINCT, getParameterAsBoolean(GroupedANOVAOperator.PARAMETER_ONLY_DISTINCT) + "");
// calculate all values
double[][] probabilities = new double[numericalAttributes.size()][nominalAttributes.size()];
for (int numericalCounter = 0; numericalCounter < probabilities.length; numericalCounter++) {
String numericalAttributeName = numericalAttributes.get(numericalCounter);
for (int nominalCounter = 0; nominalCounter < probabilities[numericalCounter].length; nominalCounter++) {
String nominalAttributeName = nominalAttributes.get(nominalCounter);
groupedAnovaOperator.setParameter(GroupedANOVAOperator.PARAMETER_ANOVA_ATTRIBUTE, numericalAttributeName);
groupedAnovaOperator.setParameter(GroupedANOVAOperator.PARAMETER_GROUP_BY_ATTRIBUTE, nominalAttributeName);
SignificanceTestResult testResult = groupedAnovaOperator.apply((ExampleSet)exampleSet.clone());
probabilities[numericalCounter][nominalCounter] = testResult.getProbability();
}
}
// create and return result
exampleSetOutput.deliver(exampleSet);
anovaOutput.deliver(new ANOVAMatrix(probabilities, numericalAttributes, nominalAttributes, significanceLevel));
}
@Override
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = super.getParameterTypes();
types.add(new ParameterTypeDouble(GroupedANOVAOperator.PARAMETER_SIGNIFICANCE_LEVEL, "The significance level for the ANOVA calculation.", 0.0d, 1.0d, 0.05d));
types.add(new ParameterTypeBoolean(GroupedANOVAOperator.PARAMETER_ONLY_DISTINCT, "Indicates if only rows with distinct values for the aggregation attribute should be used for the calculation of the aggregation function.", false));
return types;
}
}