/* * RapidMiner * * Copyright (C) 2001-2014 by RapidMiner and the contributors * * Complete list of developers available at our web site: * * http://rapidminer.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see http://www.gnu.org/licenses/. */ package com.rapidminer.operator.postprocessing; import java.util.List; import com.rapidminer.example.Attribute; import com.rapidminer.example.Attributes; import com.rapidminer.example.ExampleSet; import com.rapidminer.example.table.NominalMapping; import com.rapidminer.operator.Operator; import com.rapidminer.operator.OperatorDescription; import com.rapidminer.operator.OperatorException; import com.rapidminer.operator.UserError; import com.rapidminer.operator.ports.InputPort; import com.rapidminer.operator.ports.OutputPort; import com.rapidminer.operator.ports.metadata.ExampleSetPrecondition; import com.rapidminer.parameter.ParameterType; import com.rapidminer.parameter.ParameterTypeBoolean; import com.rapidminer.parameter.ParameterTypeDouble; import com.rapidminer.parameter.ParameterTypeString; import com.rapidminer.parameter.conditions.BooleanParameterCondition; import com.rapidminer.tools.Ontology; import com.rapidminer.tools.math.ROCBias; import com.rapidminer.tools.math.ROCData; import com.rapidminer.tools.math.ROCDataGenerator; /** * This operator finds the best threshold for crisp classifying based on user * defined costs. * * @author Martin Scholz, Ingo Mierswa */ public class ThresholdFinder extends Operator { public static final String PARAMETER_DEFINE_LABELS = "define_labels"; public static final String PARAMETER_FIRST_LABEL = "first_label"; public static final String PARAMETER_SECOND_LABEL = "second_label"; public static final String PARAMETER_MISCLASSIFICATION_COSTS_FIRST = "misclassification_costs_first"; public static final String PARAMETER_MISCLASSIFICATION_COSTS_SECOND = "misclassification_costs_second"; public static final String PARAMETER_SHOW_ROC_PLOT = "show_roc_plot"; public static final String PARAMETER_USE_EXAMPLE_WEIGHTS = "use_example_weights"; private InputPort exampleSetInput = getInputPorts().createPort("example set", ExampleSet.class); private OutputPort exampleSetOutput = getOutputPorts().createPort("example set"); private OutputPort thresholdOutput = getOutputPorts().createPort("threshold"); public ThresholdFinder(OperatorDescription description) { super(description); exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, Ontology.VALUE_TYPE, Attributes.LABEL_NAME, Attributes.PREDICTION_NAME, Attributes.CONFIDENCE_NAME)); getTransformer().addPassThroughRule(exampleSetInput, exampleSetOutput); getTransformer().addGenerationRule(thresholdOutput, Threshold.class); } @Override public void doWork() throws OperatorException { // sanity checks ExampleSet exampleSet = exampleSetInput.getData(ExampleSet.class); // checking preconditions Attribute label = exampleSet.getAttributes().getLabel(); exampleSet.recalculateAttributeStatistics(label); if (label == null) throw new UserError(this, 105); if (!label.isNominal()) throw new UserError(this, 101, label, "threshold finding"); NominalMapping mapping = label.getMapping(); if (mapping.size() != 2) throw new UserError(this, 118, new Object[] { label, Integer.valueOf(mapping.getValues().size()), Integer.valueOf(2) }); if (exampleSet.getAttributes().getPredictedLabel() == null) { throw new UserError(this, 107); } boolean useExplictLabels = getParameterAsBoolean(PARAMETER_DEFINE_LABELS); double secondCost = getParameterAsDouble(PARAMETER_MISCLASSIFICATION_COSTS_SECOND); double firstCost = getParameterAsDouble(PARAMETER_MISCLASSIFICATION_COSTS_FIRST); if (useExplictLabels) { String firstLabel = getParameterAsString(PARAMETER_FIRST_LABEL); String secondLabel = getParameterAsString(PARAMETER_SECOND_LABEL); if (mapping.getIndex(firstLabel) == -1) throw new UserError(this, 143, firstLabel, label.getName()); if (mapping.getIndex(secondLabel) == -1) throw new UserError(this, 143, secondLabel, label.getName()); // if explicit order differs from order in data: internally swap costs. if (mapping.getIndex(firstLabel) > mapping.getIndex(secondLabel)) { double temp = firstCost; firstCost = secondCost; secondCost = temp; } } // create ROC data ROCDataGenerator rocDataGenerator = new ROCDataGenerator(firstCost, secondCost); ROCData rocData = rocDataGenerator.createROCData(exampleSet, getParameterAsBoolean(PARAMETER_USE_EXAMPLE_WEIGHTS), ROCBias.getROCBiasParameter(this)); // create plotter if (getParameterAsBoolean(PARAMETER_SHOW_ROC_PLOT)) rocDataGenerator.createROCPlotDialog(rocData, true, true); // create and return output exampleSetOutput.deliver(exampleSet); thresholdOutput.deliver(new Threshold(rocDataGenerator.getBestThreshold(), mapping.getNegativeString(), mapping.getPositiveString())); } @Override public List<ParameterType> getParameterTypes() { List<ParameterType> list = super.getParameterTypes(); list.add(new ParameterTypeBoolean(PARAMETER_DEFINE_LABELS, "If checked, you can define explicitly which is the first and the second label.", false)); ParameterTypeString type = new ParameterTypeString(PARAMETER_FIRST_LABEL, "The first label."); type.registerDependencyCondition(new BooleanParameterCondition(this, PARAMETER_DEFINE_LABELS, true, true)); list.add(type); type = new ParameterTypeString(PARAMETER_SECOND_LABEL, "The second label."); type.registerDependencyCondition(new BooleanParameterCondition(this, PARAMETER_DEFINE_LABELS, true, true)); list.add(type); list.add(new ParameterTypeDouble(PARAMETER_MISCLASSIFICATION_COSTS_FIRST, "The costs assigned when an example of the first class is classified as one of the second.", 0, Double.POSITIVE_INFINITY, 1, false)); list.add(new ParameterTypeDouble(PARAMETER_MISCLASSIFICATION_COSTS_SECOND, "The costs assigned when an example of the second class is classified as one of the first.", 0, Double.POSITIVE_INFINITY, 1, false)); list.add(new ParameterTypeBoolean(PARAMETER_SHOW_ROC_PLOT, "Display a plot of the ROC curve.", false)); list.add(new ParameterTypeBoolean(PARAMETER_USE_EXAMPLE_WEIGHTS, "Indicates if example weights should be used.", true)); list.add(ROCBias.makeParameterType()); return list; } }