/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.tools.math.optimization.ec.pso;
import com.rapidminer.operator.performance.PerformanceVector;
/**
* This object stores for each individual index the current values and the best
* value for the individual so far. It also stores the fitness of the best
* values ever and the corresponding values.
*
* @author Ingo Mierswa
*/
public class Population {
private static final int CURRENT = 0;
private static final int BEST = 1;
private double[][][] values;
private double[][] individualFitness;
private double[] bestValuesEver;
private PerformanceVector bestPerformanceEver;
private double generationsBest = Double.NaN;
private int generation = 0;
private int lastImprovement = 0;
public Population(int popSize, int individualSize) {
values = new double[2][popSize][individualSize];
individualFitness = new double[2][popSize];
// setting best individual fitness to negative infinity
for (int i = 0; i < popSize; i++)
individualFitness[BEST][i] = Double.NEGATIVE_INFINITY;
}
public int getNumberOfIndividuals() {
return values[CURRENT].length;
}
public int getIndividualSize() {
return values[CURRENT][0].length;
}
public double[] getValues(int index) {
return values[CURRENT][index];
}
public double[] getLocalBestValues(int index) {
return values[BEST][index];
}
public double[] getGlobalBestValues() {
return bestValuesEver;
}
public double getBestFitnessEver() {
if (bestPerformanceEver == null)
return Double.NaN;
else
return bestPerformanceEver.getMainCriterion().getFitness();
}
public PerformanceVector getBestPerformanceEver() {
return bestPerformanceEver;
}
public double getBestFitnessInGeneration() {
return generationsBest;
}
public void setValues(int index, double[] values) {
this.values[CURRENT][index] = values;
}
public int getGeneration() {
return generation;
}
public void nextGeneration() {
generation++;
}
public int getGenerationsWithoutImprovement() {
return (generation - lastImprovement);
}
public void setFitnessVector(PerformanceVector[] performanceVectors) {
double[] fitnessValues = new double[performanceVectors.length];
for (int i = 0; i < fitnessValues.length; i++) {
fitnessValues[i] = performanceVectors[i] == null ? Double.NEGATIVE_INFINITY : performanceVectors[i].getMainCriterion().getFitness();
}
this.generationsBest = Double.NEGATIVE_INFINITY;
int generationsBestIndex = -1;
for (int i = 0; i < fitnessValues.length; i++) {
individualFitness[CURRENT][i] = fitnessValues[i];
if (fitnessValues[i] > individualFitness[BEST][i]) {
for (int d = 0; d < this.values[BEST][i].length; d++)
this.values[BEST][i][d] = this.values[CURRENT][i][d];
individualFitness[BEST][i] = fitnessValues[i];
}
if (fitnessValues[i] > generationsBest) {
generationsBest = fitnessValues[i];
generationsBestIndex = i;
}
}
if ((bestPerformanceEver == null) || (generationsBest > bestPerformanceEver.getMainCriterion().getFitness())) {
bestPerformanceEver = performanceVectors[generationsBestIndex];
bestValuesEver = new double[values[CURRENT][0].length];
for (int d = 0; d < bestValuesEver.length; d++)
bestValuesEver[d] = this.values[BEST][generationsBestIndex][d];
lastImprovement = generation;
}
}
}