package net.minecraft.util; import java.util.Random; import java.util.UUID; public class MathHelper { public static final float field_180189_a = sqrt_float(2.0F); private static final int SIN_BITS = 12; private static final int SIN_MASK = 4095; private static final int SIN_COUNT = 4096; public static final float PI = (float)Math.PI; public static final float PI2 = ((float)Math.PI * 2F); public static final float PId2 = ((float)Math.PI / 2F); private static final float radFull = ((float)Math.PI * 2F); private static final float degFull = 360.0F; private static final float radToIndex = 651.8986F; private static final float degToIndex = 11.377778F; public static final float deg2Rad = 0.017453292F; private static final float[] SIN_TABLE_FAST = new float[4096]; public static boolean fastMath = false; /** * A table of sin values computed from 0 (inclusive) to 2*pi (exclusive), with steps of 2*PI / 65536. */ private static final float[] SIN_TABLE = new float[65536]; /** * Though it looks like an array, this is really more like a mapping. Key (index of this array) is the upper 5 bits * of the result of multiplying a 32-bit unsigned integer by the B(2, 5) De Bruijn sequence 0x077CB531. Value * (value stored in the array) is the unique index (from the right) of the leftmost one-bit in a 32-bit unsigned * integer that can cause the upper 5 bits to get that value. Used for highly optimized "find the log-base-2 of * this number" calculations. */ private static final int[] multiplyDeBruijnBitPosition; private static final String __OBFID = "CL_00001496"; /** * sin looked up in a table */ public static float sin(float p_76126_0_) { return fastMath ? SIN_TABLE_FAST[(int)(p_76126_0_ * 651.8986F) & 4095] : SIN_TABLE[(int)(p_76126_0_ * 10430.378F) & 65535]; } /** * cos looked up in the sin table with the appropriate offset */ public static float cos(float p_76134_0_) { return fastMath ? SIN_TABLE_FAST[(int)((p_76134_0_ + ((float)Math.PI / 2F)) * 651.8986F) & 4095] : SIN_TABLE[(int)(p_76134_0_ * 10430.378F + 16384.0F) & 65535]; } public static float sqrt_float(float p_76129_0_) { return (float)Math.sqrt((double)p_76129_0_); } public static float sqrt_double(double p_76133_0_) { return (float)Math.sqrt(p_76133_0_); } /** * Returns the greatest integer less than or equal to the float argument */ public static int floor_float(float p_76141_0_) { int var1 = (int)p_76141_0_; return p_76141_0_ < (float)var1 ? var1 - 1 : var1; } /** * returns par0 cast as an int, and no greater than Integer.MAX_VALUE-1024 */ public static int truncateDoubleToInt(double p_76140_0_) { return (int)(p_76140_0_ + 1024.0D) - 1024; } /** * Returns the greatest integer less than or equal to the double argument */ public static int floor_double(double p_76128_0_) { int var2 = (int)p_76128_0_; return p_76128_0_ < (double)var2 ? var2 - 1 : var2; } /** * Long version of floor_double */ public static long floor_double_long(double p_76124_0_) { long var2 = (long)p_76124_0_; return p_76124_0_ < (double)var2 ? var2 - 1L : var2; } public static int func_154353_e(double p_154353_0_) { return (int)(p_154353_0_ >= 0.0D ? p_154353_0_ : -p_154353_0_ + 1.0D); } public static float abs(float p_76135_0_) { return p_76135_0_ >= 0.0F ? p_76135_0_ : -p_76135_0_; } /** * Returns the unsigned value of an int. */ public static int abs_int(int p_76130_0_) { return p_76130_0_ >= 0 ? p_76130_0_ : -p_76130_0_; } public static int ceiling_float_int(float p_76123_0_) { int var1 = (int)p_76123_0_; return p_76123_0_ > (float)var1 ? var1 + 1 : var1; } public static int ceiling_double_int(double p_76143_0_) { int var2 = (int)p_76143_0_; return p_76143_0_ > (double)var2 ? var2 + 1 : var2; } /** * Returns the value of the first parameter, clamped to be within the lower and upper limits given by the second and * third parameters. */ public static int clamp_int(int p_76125_0_, int p_76125_1_, int p_76125_2_) { return p_76125_0_ < p_76125_1_ ? p_76125_1_ : (p_76125_0_ > p_76125_2_ ? p_76125_2_ : p_76125_0_); } /** * Returns the value of the first parameter, clamped to be within the lower and upper limits given by the second and * third parameters */ public static float clamp_float(float p_76131_0_, float p_76131_1_, float p_76131_2_) { return p_76131_0_ < p_76131_1_ ? p_76131_1_ : (p_76131_0_ > p_76131_2_ ? p_76131_2_ : p_76131_0_); } public static double clamp_double(double p_151237_0_, double p_151237_2_, double p_151237_4_) { return p_151237_0_ < p_151237_2_ ? p_151237_2_ : (p_151237_0_ > p_151237_4_ ? p_151237_4_ : p_151237_0_); } public static double denormalizeClamp(double p_151238_0_, double p_151238_2_, double p_151238_4_) { return p_151238_4_ < 0.0D ? p_151238_0_ : (p_151238_4_ > 1.0D ? p_151238_2_ : p_151238_0_ + (p_151238_2_ - p_151238_0_) * p_151238_4_); } /** * Maximum of the absolute value of two numbers. */ public static double abs_max(double p_76132_0_, double p_76132_2_) { if (p_76132_0_ < 0.0D) { p_76132_0_ = -p_76132_0_; } if (p_76132_2_ < 0.0D) { p_76132_2_ = -p_76132_2_; } return p_76132_0_ > p_76132_2_ ? p_76132_0_ : p_76132_2_; } /** * Buckets an integer with specifed bucket sizes. Args: i, bucketSize */ public static int bucketInt(int p_76137_0_, int p_76137_1_) { return p_76137_0_ < 0 ? -((-p_76137_0_ - 1) / p_76137_1_) - 1 : p_76137_0_ / p_76137_1_; } public static int getRandomIntegerInRange(Random p_76136_0_, int p_76136_1_, int p_76136_2_) { return p_76136_1_ >= p_76136_2_ ? p_76136_1_ : p_76136_0_.nextInt(p_76136_2_ - p_76136_1_ + 1) + p_76136_1_; } public static float randomFloatClamp(Random p_151240_0_, float p_151240_1_, float p_151240_2_) { return p_151240_1_ >= p_151240_2_ ? p_151240_1_ : p_151240_0_.nextFloat() * (p_151240_2_ - p_151240_1_) + p_151240_1_; } public static double getRandomDoubleInRange(Random p_82716_0_, double p_82716_1_, double p_82716_3_) { return p_82716_1_ >= p_82716_3_ ? p_82716_1_ : p_82716_0_.nextDouble() * (p_82716_3_ - p_82716_1_) + p_82716_1_; } public static double average(long[] p_76127_0_) { long var1 = 0L; long[] var3 = p_76127_0_; int var4 = p_76127_0_.length; for (int var5 = 0; var5 < var4; ++var5) { long var6 = var3[var5]; var1 += var6; } return (double)var1 / (double)p_76127_0_.length; } public static boolean func_180185_a(float p_180185_0_, float p_180185_1_) { return abs(p_180185_1_ - p_180185_0_) < 1.0E-5F; } public static int func_180184_b(int p_180184_0_, int p_180184_1_) { return (p_180184_0_ % p_180184_1_ + p_180184_1_) % p_180184_1_; } /** * the angle is reduced to an angle between -180 and +180 by mod, and a 360 check */ public static float wrapAngleTo180_float(float p_76142_0_) { p_76142_0_ %= 360.0F; if (p_76142_0_ >= 180.0F) { p_76142_0_ -= 360.0F; } if (p_76142_0_ < -180.0F) { p_76142_0_ += 360.0F; } return p_76142_0_; } /** * the angle is reduced to an angle between -180 and +180 by mod, and a 360 check */ public static double wrapAngleTo180_double(double p_76138_0_) { p_76138_0_ %= 360.0D; if (p_76138_0_ >= 180.0D) { p_76138_0_ -= 360.0D; } if (p_76138_0_ < -180.0D) { p_76138_0_ += 360.0D; } return p_76138_0_; } /** * parses the string as integer or returns the second parameter if it fails */ public static int parseIntWithDefault(String p_82715_0_, int p_82715_1_) { try { return Integer.parseInt(p_82715_0_); } catch (Throwable var3) { return p_82715_1_; } } /** * parses the string as integer or returns the second parameter if it fails. this value is capped to par2 */ public static int parseIntWithDefaultAndMax(String p_82714_0_, int p_82714_1_, int p_82714_2_) { return Math.max(p_82714_2_, parseIntWithDefault(p_82714_0_, p_82714_1_)); } /** * parses the string as double or returns the second parameter if it fails. */ public static double parseDoubleWithDefault(String p_82712_0_, double p_82712_1_) { try { return Double.parseDouble(p_82712_0_); } catch (Throwable var4) { return p_82712_1_; } } public static double parseDoubleWithDefaultAndMax(String p_82713_0_, double p_82713_1_, double p_82713_3_) { return Math.max(p_82713_3_, parseDoubleWithDefault(p_82713_0_, p_82713_1_)); } /** * Returns the input value rounded up to the next highest power of two. */ public static int roundUpToPowerOfTwo(int p_151236_0_) { int var1 = p_151236_0_ - 1; var1 |= var1 >> 1; var1 |= var1 >> 2; var1 |= var1 >> 4; var1 |= var1 >> 8; var1 |= var1 >> 16; return var1 + 1; } /** * Is the given value a power of two? (1, 2, 4, 8, 16, ...) */ private static boolean isPowerOfTwo(int p_151235_0_) { return p_151235_0_ != 0 && (p_151235_0_ & p_151235_0_ - 1) == 0; } /** * Uses a B(2, 5) De Bruijn sequence and a lookup table to efficiently calculate the log-base-two of the given * value. Optimized for cases where the input value is a power-of-two. If the input value is not a power-of-two, * then subtract 1 from the return value. */ private static int calculateLogBaseTwoDeBruijn(int p_151241_0_) { p_151241_0_ = isPowerOfTwo(p_151241_0_) ? p_151241_0_ : roundUpToPowerOfTwo(p_151241_0_); return multiplyDeBruijnBitPosition[(int)((long)p_151241_0_ * 125613361L >> 27) & 31]; } /** * Efficiently calculates the floor of the base-2 log of an integer value. This is effectively the index of the * highest bit that is set. For example, if the number in binary is 0...100101, this will return 5. */ public static int calculateLogBaseTwo(int p_151239_0_) { return calculateLogBaseTwoDeBruijn(p_151239_0_) - (isPowerOfTwo(p_151239_0_) ? 0 : 1); } public static int func_154354_b(int p_154354_0_, int p_154354_1_) { if (p_154354_1_ == 0) { return 0; } else if (p_154354_0_ == 0) { return p_154354_1_; } else { if (p_154354_0_ < 0) { p_154354_1_ *= -1; } int var2 = p_154354_0_ % p_154354_1_; return var2 == 0 ? p_154354_0_ : p_154354_0_ + p_154354_1_ - var2; } } public static int func_180183_b(float p_180183_0_, float p_180183_1_, float p_180183_2_) { return func_180181_b(floor_float(p_180183_0_ * 255.0F), floor_float(p_180183_1_ * 255.0F), floor_float(p_180183_2_ * 255.0F)); } public static int func_180181_b(int p_180181_0_, int p_180181_1_, int p_180181_2_) { int var3 = (p_180181_0_ << 8) + p_180181_1_; var3 = (var3 << 8) + p_180181_2_; return var3; } public static int func_180188_d(int p_180188_0_, int p_180188_1_) { int var2 = (p_180188_0_ & 16711680) >> 16; int var3 = (p_180188_1_ & 16711680) >> 16; int var4 = (p_180188_0_ & 65280) >> 8; int var5 = (p_180188_1_ & 65280) >> 8; int var6 = (p_180188_0_ & 255) >> 0; int var7 = (p_180188_1_ & 255) >> 0; int var8 = (int)((float)var2 * (float)var3 / 255.0F); int var9 = (int)((float)var4 * (float)var5 / 255.0F); int var10 = (int)((float)var6 * (float)var7 / 255.0F); return p_180188_0_ & -16777216 | var8 << 16 | var9 << 8 | var10; } public static long func_180186_a(Vec3i pos) { return func_180187_c(pos.getX(), pos.getY(), pos.getZ()); } public static long func_180187_c(int x, int y, int z) { long var3 = (long)(x * 3129871) ^ (long)z * 116129781L ^ (long)y; var3 = var3 * var3 * 42317861L + var3 * 11L; return var3; } public static UUID func_180182_a(Random p_180182_0_) { long var1 = p_180182_0_.nextLong() & -61441L | 16384L; long var3 = p_180182_0_.nextLong() & 4611686018427387903L | Long.MIN_VALUE; return new UUID(var1, var3); } static { int i; for (i = 0; i < 65536; ++i) { SIN_TABLE[i] = (float)Math.sin((double)i * Math.PI * 2.0D / 65536.0D); } multiplyDeBruijnBitPosition = new int[] {0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9}; for (i = 0; i < 4096; ++i) { SIN_TABLE_FAST[i] = (float)Math.sin((double)(((float)i + 0.5F) / 4096.0F * ((float)Math.PI * 2F))); } for (i = 0; i < 360; i += 90) { SIN_TABLE_FAST[(int)((float)i * 11.377778F) & 4095] = (float)Math.sin((double)((float)i * 0.017453292F)); } } }