// // LosslessJPEGCodec.java // /* OME Bio-Formats package for reading and converting biological file formats. Copyright (C) 2005-@year@ UW-Madison LOCI and Glencoe Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ package loci.formats.codec; import java.io.IOException; import java.util.Vector; import loci.common.DataTools; import loci.common.RandomAccessInputStream; import loci.formats.FormatException; import loci.formats.UnsupportedCompressionException; /** * Decompresses lossless JPEG images. * * <dl><dt><b>Source code:</b></dt> * <dd><a href="http://trac.openmicroscopy.org.uk/ome/browser/bioformats.git/components/bio-formats/src/loci/formats/codec/LosslessJPEGCodec.java">Trac</a>, * <a href="http://git.openmicroscopy.org/?p=bioformats.git;a=blob;f=components/bio-formats/src/loci/formats/codec/LosslessJPEGCodec.java;hb=HEAD">Gitweb</a></dd></dl> * * @author Melissa Linkert melissa at glencoesoftware.com */ public class LosslessJPEGCodec extends BaseCodec { // -- Constants -- // Start of Frame markers - non-differential, Huffman coding private static final int SOF0 = 0xffc0; // baseline DCT private static final int SOF1 = 0xffc1; // extended sequential DCT private static final int SOF2 = 0xffc2; // progressive DCT private static final int SOF3 = 0xffc3; // lossless (sequential) // Start of Frame markers - differential, Huffman coding private static final int SOF5 = 0xffc5; // differential sequential DCT private static final int SOF6 = 0xffc6; // differential progressive DCT private static final int SOF7 = 0xffc7; // differential lossless (sequential) // Start of Frame markers - non-differential, arithmetic coding private static final int JPG = 0xffc8; // reserved for JPEG extensions private static final int SOF9 = 0xffc9; // extended sequential DCT private static final int SOF10 = 0xffca; // progressive DCT private static final int SOF11 = 0xffcb; // lossless (sequential) // Start of Frame markers - differential, arithmetic coding private static final int SOF13 = 0xffcd; // differential sequential DCT private static final int SOF14 = 0xffce; // differential progressive DCT private static final int SOF15 = 0xffcf; // differential lossless (sequential) private static final int DHT = 0xffc4; // define Huffman table(s) private static final int DAC = 0xffcc; // define arithmetic coding conditions // Restart interval termination private static final int RST_0 = 0xffd0; private static final int RST_1 = 0xffd1; private static final int RST_2 = 0xffd2; private static final int RST_3 = 0xffd3; private static final int RST_4 = 0xffd4; private static final int RST_5 = 0xffd5; private static final int RST_6 = 0xffd6; private static final int RST_7 = 0xffd7; private static final int SOI = 0xffd8; // start of image private static final int EOI = 0xffd9; // end of image private static final int SOS = 0xffda; // start of scan private static final int DQT = 0xffdb; // define quantization table(s) private static final int DNL = 0xffdc; // define number of lines private static final int DRI = 0xffdd; // define restart interval private static final int DHP = 0xffde; // define hierarchical progression private static final int EXP = 0xffdf; // expand reference components private static final int COM = 0xfffe; // comment // -- Codec API methods -- /* @see Codec#compress(byte[], CodecOptions) */ public byte[] compress(byte[] data, CodecOptions options) throws FormatException { throw new UnsupportedCompressionException( "Lossless JPEG compression not supported"); } /** * The CodecOptions parameter should have the following fields set: * {@link CodecOptions#interleaved interleaved} * {@link CodecOptions#littleEndian littleEndian} * * @see Codec#decompress(RandomAccessInputStream, CodecOptions) */ public byte[] decompress(RandomAccessInputStream in, CodecOptions options) throws FormatException, IOException { if (in == null) throw new IllegalArgumentException("No data to decompress."); if (options == null) options = CodecOptions.getDefaultOptions(); byte[] buf = new byte[0]; int width = 0, height = 0; int bitsPerSample = 0, nComponents = 0, bytesPerSample = 0; int[] horizontalSampling = null, verticalSampling = null; int[] quantizationTable = null; short[][] huffmanTables = null; int startPredictor = 0, endPredictor = 0; int pointTransform = 0; int[] dcTable = null, acTable = null; while (in.getFilePointer() < in.length() - 1) { int code = in.readShort() & 0xffff; int length = in.readShort() & 0xffff; long fp = in.getFilePointer(); if (length > 0xff00) { length = 0; in.seek(fp - 2); } else if (code == SOS) { nComponents = in.read(); dcTable = new int[nComponents]; acTable = new int[nComponents]; for (int i=0; i<nComponents; i++) { int componentSelector = in.read(); int tableSelector = in.read(); dcTable[i] = (tableSelector & 0xf0) >> 4; acTable[i] = tableSelector & 0xf; } startPredictor = in.read(); endPredictor = in.read(); pointTransform = in.read() & 0xf; // read image data byte[] toDecode = new byte[(int) (in.length() - in.getFilePointer())]; in.read(toDecode); // scrub out byte stuffing ByteVector b = new ByteVector(); for (int i=0; i<toDecode.length; i++) { b.add(toDecode[i]); if (toDecode[i] == (byte) 0xff && toDecode[i + 1] == 0) i++; } toDecode = b.toByteArray(); BitBuffer bb = new BitBuffer(toDecode); HuffmanCodec huffman = new HuffmanCodec(); HuffmanCodecOptions huffmanOptions = new HuffmanCodecOptions(); huffmanOptions.bitsPerSample = bitsPerSample; huffmanOptions.maxBytes = buf.length / nComponents; int nextSample = 0; while (nextSample < buf.length / nComponents) { for (int i=0; i<nComponents; i++) { huffmanOptions.table = huffmanTables[dcTable[i]]; int v = 0; if (huffmanTables != null) { v = huffman.getSample(bb, huffmanOptions); if (nextSample == 0) { v += (int) Math.pow(2, bitsPerSample - 1); } } else { throw new UnsupportedCompressionException( "Arithmetic coding not supported"); } // apply predictor to the sample int predictor = startPredictor; if (nextSample < width * bytesPerSample) predictor = 1; else if ((nextSample % (width * bytesPerSample)) == 0) { predictor = 2; } int componentOffset = i * (buf.length / nComponents); int indexA = nextSample - bytesPerSample + componentOffset; int indexB = nextSample - width * bytesPerSample + componentOffset; int indexC = nextSample - (width + 1) * bytesPerSample + componentOffset; int sampleA = indexA < 0 ? 0 : DataTools.bytesToInt(buf, indexA, bytesPerSample, false); int sampleB = indexB < 0 ? 0 : DataTools.bytesToInt(buf, indexB, bytesPerSample, false); int sampleC = indexC < 0 ? 0 : DataTools.bytesToInt(buf, indexC, bytesPerSample, false); if (nextSample > 0) { int pred = 0; switch (predictor) { case 1: pred = sampleA; break; case 2: pred = sampleB; break; case 3: pred = sampleC; break; case 4: pred = sampleA + sampleB + sampleC; break; case 5: pred = sampleA + ((sampleB - sampleC) / 2); break; case 6: pred = sampleB + ((sampleA - sampleC) / 2); break; case 7: pred = (sampleA + sampleB) / 2; break; } v += pred; } int offset = componentOffset + nextSample; DataTools.unpackBytes(v, buf, offset, bytesPerSample, false); } nextSample += bytesPerSample; } } else { length -= 2; // stored length includes length param if (length == 0) continue; if (code == EOI) { } else if (code == SOF3) { // lossless w/Huffman coding bitsPerSample = in.read(); height = in.readShort(); width = in.readShort(); nComponents = in.read(); horizontalSampling = new int[nComponents]; verticalSampling = new int[nComponents]; quantizationTable = new int[nComponents]; for (int i=0; i<nComponents; i++) { in.skipBytes(1); int s = in.read(); horizontalSampling[i] = (s & 0xf0) >> 4; verticalSampling[i] = s & 0x0f; quantizationTable[i] = in.read(); } bytesPerSample = bitsPerSample / 8; if ((bitsPerSample % 8) != 0) bytesPerSample++; buf = new byte[width * height * nComponents * bytesPerSample]; } else if (code == SOF11) { throw new UnsupportedCompressionException( "Arithmetic coding is not yet supported"); } else if (code == DHT) { if (huffmanTables == null) { huffmanTables = new short[4][]; } int s = in.read(); byte tableClass = (byte) ((s & 0xf0) >> 4); byte destination = (byte) (s & 0xf); int[] nCodes = new int[16]; Vector table = new Vector(); for (int i=0; i<nCodes.length; i++) { nCodes[i] = in.read(); table.add(new Short((short) nCodes[i])); } for (int i=0; i<nCodes.length; i++) { for (int j=0; j<nCodes[i]; j++) { table.add(new Short((short) (in.read() & 0xff))); } } huffmanTables[destination] = new short[table.size()]; for (int i=0; i<huffmanTables[destination].length; i++) { huffmanTables[destination][i] = ((Short) table.get(i)).shortValue(); } } in.seek(fp + length); } } if (options.interleaved && nComponents > 1) { // data is stored in planar (RRR...GGG...BBB...) order byte[] newBuf = new byte[buf.length]; for (int i=0; i<buf.length; i+=nComponents*bytesPerSample) { for (int c=0; c<nComponents; c++) { int src = c * (buf.length / nComponents) + (i / nComponents); int dst = i + c * bytesPerSample; System.arraycopy(buf, src, newBuf, dst, bytesPerSample); } } buf = newBuf; } if (options.littleEndian && bytesPerSample > 1) { // data is stored in big endian order // reverse the bytes in each sample byte[] newBuf = new byte[buf.length]; for (int i=0; i<buf.length; i+=bytesPerSample) { for (int q=0; q<bytesPerSample; q++) { newBuf[i + bytesPerSample - q - 1] = buf[i + q]; } } buf = newBuf; } return buf; } }