package org.seqcode.ml.classification; import java.util.Arrays; import java.util.Collections; import java.util.Enumeration; import java.util.List; import java.util.Random; import java.util.Vector; import java.util.ArrayList; import weka.classifiers.Classifier; import weka.classifiers.RandomizableParallelIteratedSingleClassifierEnhancer; import weka.core.AdditionalMeasureProducer; import weka.core.Aggregateable; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.Randomizable; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.PartitionGenerator; /** <!-- globalinfo-start --> * Class for bagging a classifier to reduce variance. Can do classification and regression depending on the base learner. <br/> * <br/> * For more information, see<br/> * <br/> * Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @article{Breiman1996, * author = {Leo Breiman}, * journal = {Machine Learning}, * number = {2}, * pages = {123-140}, * title = {Bagging predictors}, * volume = {24}, * year = {1996} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -P * Size of each bag, as a percentage of the * training set size. (default 100)</pre> * * <pre> -O * Calculate the out of bag error.</pre> * * <pre> -represent-copies-using-weights * Represent copies of instances using weights rather than explicitly.</pre> * * <pre> -S <num> * Random number seed. * (default 1)</pre> * * <pre> -num-slots <num> * Number of execution slots. * (default 1 - i.e. no parallelism)</pre> * * <pre> -I <num> * Number of iterations. * (default 10)</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * * <pre> -W * Full name of base classifier. * (default: weka.classifiers.trees.REPTree)</pre> * * <pre> * Options specific to classifier weka.classifiers.trees.REPTree: * </pre> * * <pre> -M <minimum number of instances> * Set minimum number of instances per leaf (default 2).</pre> * * <pre> -V <minimum variance for split> * Set minimum numeric class variance proportion * of train variance for split (default 1e-3).</pre> * * <pre> -N <number of folds> * Number of folds for reduced error pruning (default 3).</pre> * * <pre> -S <seed> * Seed for random data shuffling (default 1).</pre> * * <pre> -P * No pruning.</pre> * * <pre> -L * Maximum tree depth (default -1, no maximum)</pre> * * <pre> -I * Initial class value count (default 0)</pre> * * <pre> -R * Spread initial count over all class values (i.e. don't use 1 per value)</pre> * <!-- options-end --> * * Options after -- are passed to the designated classifier.<p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (len@reeltwo.com) * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 10470 $ */ public class AttributeBagging extends RandomizableParallelIteratedSingleClassifierEnhancer implements WeightedInstancesHandler, AdditionalMeasureProducer, TechnicalInformationHandler, PartitionGenerator, Aggregateable<AttributeBagging> { public Classifier getClassifier(int ind){ return m_Classifiers[ind]; } /** for serialization */ static final long serialVersionUID = -115879962237199703L; /** The size of each bag sample, as a percentage of the training size */ protected int m_BagSizePercent = 100; /** Whether to calculate the out of bag error */ protected boolean m_CalcOutOfBag = false; /** Whether to represent copies of instances using weights rather than explicitly */ protected boolean m_RepresentUsingWeights = false; /** The out of bag error that has been calculated */ protected double m_OutOfBagError; /** * Constructor. */ public AttributeBagging() { m_Classifier = new weka.classifiers.trees.REPTree(); } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for bagging a classifier to reduce variance. Can do classification " + "and regression depending on the base learner. \n\n" + "For more information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Leo Breiman"); result.setValue(Field.YEAR, "1996"); result.setValue(Field.TITLE, "Bagging predictors"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "24"); result.setValue(Field.NUMBER, "2"); result.setValue(Field.PAGES, "123-140"); return result; } /** * String describing default classifier. * * @return the default classifier classname */ @Override protected String defaultClassifierString() { return "weka.classifiers.trees.REPTree"; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(3); newVector.addElement(new Option( "\tSize of each bag, as a percentage of the\n" + "\ttraining set size. (default 100)", "P", 1, "-P")); newVector.addElement(new Option( "\tCalculate the out of bag error.", "O", 0, "-O")); newVector.addElement(new Option( "\tRepresent copies of instances using weights rather than explicitly.", "-represent-copies-using-weights", 0, "-represent-copies-using-weights")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -P * Size of each bag, as a percentage of the * training set size. (default 100)</pre> * * <pre> -O * Calculate the out of bag error.</pre> * * <pre> -represent-copies-using-weights * Represent copies of instances using weights rather than explicitly.</pre> * * <pre> -S <num> * Random number seed. * (default 1)</pre> * * <pre> -num-slots <num> * Number of execution slots. * (default 1 - i.e. no parallelism)</pre> * * <pre> -I <num> * Number of iterations. * (default 10)</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * * <pre> -W * Full name of base classifier. * (default: weka.classifiers.trees.REPTree)</pre> * * <pre> * Options specific to classifier weka.classifiers.trees.REPTree: * </pre> * * <pre> -M <minimum number of instances> * Set minimum number of instances per leaf (default 2).</pre> * * <pre> -V <minimum variance for split> * Set minimum numeric class variance proportion * of train variance for split (default 1e-3).</pre> * * <pre> -N <number of folds> * Number of folds for reduced error pruning (default 3).</pre> * * <pre> -S <seed> * Seed for random data shuffling (default 1).</pre> * * <pre> -P * No pruning.</pre> * * <pre> -L * Maximum tree depth (default -1, no maximum)</pre> * * <pre> -I * Initial class value count (default 0)</pre> * * <pre> -R * Spread initial count over all class values (i.e. don't use 1 per value)</pre> * <!-- options-end --> * * Options after -- are passed to the designated classifier.<p> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String bagSize = Utils.getOption('P', options); if (bagSize.length() != 0) { setBagSizePercent(Integer.parseInt(bagSize)); } else { setBagSizePercent(100); } setCalcOutOfBag(Utils.getFlag('O', options)); setRepresentCopiesUsingWeights(Utils.getFlag("represent-copies-using-weights", options)); super.setOptions(options); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String [] getOptions() { Vector<String> options = new Vector<String>(); options.add("-P"); options.add("" + getBagSizePercent()); if (getCalcOutOfBag()) { options.add("-O"); } if (getRepresentCopiesUsingWeights()) { options.add("-represent-copies-using-weights"); } Collections.addAll(options, super.getOptions()); return options.toArray(new String[0]); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String bagSizePercentTipText() { return "Size of each bag, as a percentage of the training set size."; } /** * Gets the size of each bag, as a percentage of the training set size. * * @return the bag size, as a percentage. */ public int getBagSizePercent() { return m_BagSizePercent; } /** * Sets the size of each bag, as a percentage of the training set size. * * @param newBagSizePercent the bag size, as a percentage. */ public void setBagSizePercent(int newBagSizePercent) { m_BagSizePercent = newBagSizePercent; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String representCopiesUsingWeightsTipText() { return "Whether to represent copies of instances using weights rather than explicitly."; } /** * Set whether copies of instances are represented using weights rather than explicitly. * * @param representUsingWeights whether to represent copies using weights */ public void setRepresentCopiesUsingWeights(boolean representUsingWeights) { m_RepresentUsingWeights = representUsingWeights; } /** * Get whether copies of instances are represented using weights rather than explicitly. * * @return whether the out of bag error is calculated */ public boolean getRepresentCopiesUsingWeights() { return m_RepresentUsingWeights; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String calcOutOfBagTipText() { return "Whether the out-of-bag error is calculated."; } /** * Set whether the out of bag error is calculated. * * @param calcOutOfBag whether to calculate the out of bag error */ public void setCalcOutOfBag(boolean calcOutOfBag) { m_CalcOutOfBag = calcOutOfBag; } /** * Get whether the out of bag error is calculated. * * @return whether the out of bag error is calculated */ public boolean getCalcOutOfBag() { return m_CalcOutOfBag; } /** * Gets the out of bag error that was calculated as the classifier * was built. * * @return the out of bag error */ public double measureOutOfBagError() { return m_OutOfBagError; } /** * Returns an enumeration of the additional measure names. * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> newVector = new Vector<String>(1); newVector.addElement("measureOutOfBagError"); return newVector.elements(); } /** * Returns the value of the named measure. * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.equalsIgnoreCase("measureOutOfBagError")) { return measureOutOfBagError(); } else {throw new IllegalArgumentException(additionalMeasureName + " not supported (Bagging)"); } } protected Random m_random; protected boolean[][] m_inBag; protected Instances m_data; /** * Returns a training set for a particular iteration. * * @param iteration the number of the iteration for the requested training set. * @return the training set for the supplied iteration number * @throws Exception if something goes wrong when generating a training set. */ @Override protected synchronized Instances getTrainingSet(int iteration) throws Exception { int bagSize = m_data.numInstances() * m_BagSizePercent / 100; Instances bagData = null; Random r = new Random(m_Seed + iteration); // create the in-bag dataset if (m_CalcOutOfBag) { m_inBag[iteration] = new boolean[m_data.numInstances()]; bagData = m_data.resampleWithWeights(r, m_inBag[iteration], getRepresentCopiesUsingWeights()); } else { bagData = m_data.resampleWithWeights(r, getRepresentCopiesUsingWeights()); if (bagSize < m_data.numInstances()) { bagData.randomize(r); Instances newBagData = new Instances(bagData, 0, bagSize); bagData = newBagData; } } return bagData; } /** * Bagging method. * * @param data the training data to be used for generating the * bagged classifier. * @throws Exception if the classifier could not be built successfully */ @Override public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // Has user asked to represent copies using weights? if (getRepresentCopiesUsingWeights() && !(m_Classifier instanceof WeightedInstancesHandler)) { throw new IllegalArgumentException("Cannot represent copies using weights when " + "base learner in bagging does not implement " + "WeightedInstancesHandler."); } // remove instances with missing class m_data = new Instances(data); m_data.deleteWithMissingClass(); super.buildClassifier(m_data); if (m_CalcOutOfBag && (m_BagSizePercent != 100)) { throw new IllegalArgumentException("Bag size needs to be 100% if " + "out-of-bag error is to be calculated!"); } m_random = new Random(m_Seed); m_inBag = null; if (m_CalcOutOfBag) m_inBag = new boolean[m_Classifiers.length][]; for (int j = 0; j < m_Classifiers.length; j++) { if (m_Classifier instanceof Randomizable) { ((Randomizable) m_Classifiers[j]).setSeed(m_random.nextInt()); } } buildClassifiers(); // calc OOB error? if (getCalcOutOfBag()) { double outOfBagCount = 0.0; double errorSum = 0.0; boolean numeric = m_data.classAttribute().isNumeric(); for (int i = 0; i < m_data.numInstances(); i++) { double vote; double[] votes; if (numeric) votes = new double[1]; else votes = new double[m_data.numClasses()]; // determine predictions for instance int voteCount = 0; for (int j = 0; j < m_Classifiers.length; j++) { if (m_inBag[j][i]) continue; if (numeric) { double pred = m_Classifiers[j].classifyInstance(m_data.instance(i)); if (!Utils.isMissingValue(pred)) { votes[0] += pred; voteCount++; } } else { voteCount++; double[] newProbs = m_Classifiers[j].distributionForInstance(m_data.instance(i)); // average the probability estimates for (int k = 0; k < newProbs.length; k++) { votes[k] += newProbs[k]; } } } // "vote" if (numeric) { if (voteCount == 0) { vote = Utils.missingValue(); } else { vote = votes[0] / voteCount; // average } } else { if (Utils.eq(Utils.sum(votes), 0)) { vote = Utils.missingValue(); } else { vote = Utils.maxIndex(votes); // predicted class Utils.normalize(votes); } } // error for instance if (!Utils.isMissingValue(vote)) { outOfBagCount += m_data.instance(i).weight(); if (numeric) { errorSum += StrictMath.abs(vote - m_data.instance(i).classValue()) * m_data.instance(i).weight(); } else { if (vote != m_data.instance(i).classValue()) errorSum += m_data.instance(i).weight(); } } } if (outOfBagCount > 0) { m_OutOfBagError = errorSum / outOfBagCount; } } else { m_OutOfBagError = 0; } // save memory m_data = null; } /** * Calculates the class membership probabilities for the given test * instance. * * @param instance the instance to be classified * @return preedicted class probability distribution * @throws Exception if distribution can't be computed successfully */ @Override public double[] distributionForInstance(Instance instance) throws Exception { double [] sums = new double [instance.numClasses()], newProbs; double numPreds = 0; for (int i = 0; i < m_NumIterations; i++) { if (instance.classAttribute().isNumeric() == true) { double pred = m_Classifiers[i].classifyInstance(instance); if (!Utils.isMissingValue(pred)) { sums[0] += pred; numPreds++; } } else { newProbs = m_Classifiers[i].distributionForInstance(instance); for (int j = 0; j < newProbs.length; j++) sums[j] += newProbs[j]; } } if (instance.classAttribute().isNumeric() == true) { if (numPreds == 0) { sums[0] = Utils.missingValue(); } else { sums[0] /= numPreds; } return sums; } else if (Utils.eq(Utils.sum(sums), 0)) { return sums; } else { Utils.normalize(sums); return sums; } } /** * Returns description of the bagged classifier. * * @return description of the bagged classifier as a string */ @Override public String toString() { if (m_Classifiers == null) { return "Bagging: No model built yet."; } StringBuffer text = new StringBuffer(); text.append("All the base classifiers: \n\n"); for (int i = 0; i < m_Classifiers.length; i++) text.append(m_Classifiers[i].toString() + "\n\n"); if (m_CalcOutOfBag) { text.append("Out of bag error: " + Utils.doubleToString(m_OutOfBagError, 4) + "\n\n"); } return text.toString(); } /** * Builds the classifier to generate a partition. */ @Override public void generatePartition(Instances data) throws Exception { if (m_Classifier instanceof PartitionGenerator) buildClassifier(data); else throw new Exception("Classifier: " + getClassifierSpec() + " cannot generate a partition"); } /** * Computes an array that indicates leaf membership */ @Override public double[] getMembershipValues(Instance inst) throws Exception { if (m_Classifier instanceof PartitionGenerator) { ArrayList<double[]> al = new ArrayList<double[]>(); int size = 0; for (int i = 0; i < m_Classifiers.length; i++) { double[] r = ((PartitionGenerator)m_Classifiers[i]). getMembershipValues(inst); size += r.length; al.add(r); } double[] values = new double[size]; int pos = 0; for (double[] v: al) { System.arraycopy(v, 0, values, pos, v.length); pos += v.length; } return values; } else throw new Exception("Classifier: " + getClassifierSpec() + " cannot generate a partition"); } /** * Returns the number of elements in the partition. */ @Override public int numElements() throws Exception { if (m_Classifier instanceof PartitionGenerator) { int size = 0; for (int i = 0; i < m_Classifiers.length; i++) { size += ((PartitionGenerator)m_Classifiers[i]).numElements(); } return size; } else throw new Exception("Classifier: " + getClassifierSpec() + " cannot generate a partition"); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 10470 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new AttributeBagging(), argv); } protected List<Classifier> m_classifiersCache; /** * Aggregate an object with this one * * @param toAggregate the object to aggregate * @return the result of aggregation * @throws Exception if the supplied object can't be aggregated for some * reason */ @Override public AttributeBagging aggregate(AttributeBagging toAggregate) throws Exception { if (!m_Classifier.getClass().isAssignableFrom(toAggregate.m_Classifier.getClass())) { throw new Exception("Can't aggregate because base classifiers differ"); } if (m_classifiersCache == null) { m_classifiersCache = new ArrayList<Classifier>(); m_classifiersCache.addAll(Arrays.asList(m_Classifiers)); } m_classifiersCache.addAll(Arrays.asList(toAggregate.m_Classifiers)); return this; } /** * Call to complete the aggregation process. Allows implementers to do any * final processing based on how many objects were aggregated. * * @throws Exception if the aggregation can't be finalized for some reason */ @Override public void finalizeAggregation() throws Exception { m_Classifiers = m_classifiersCache.toArray(new Classifier[1]); m_NumIterations = m_Classifiers.length; m_classifiersCache = null; } }