/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package java.lang;
import java.util.Random;
/**
* Class Math provides basic math constants and operations such as trigonometric
* functions, hyperbolic functions, exponential, logarithms, etc.
*/
public final class Math {
/**
* The double value closest to e, the base of the natural logarithm.
*/
public static final double E = 2.718281828459045;
/**
* The double value closest to pi, the ratio of a circle's circumference to
* its diameter.
*/
public static final double PI = 3.141592653589793;
private static class NoImagePreloadHolder {
private static final Random INSTANCE = new Random();
}
/**
* Prevents this class from being instantiated.
*/
private Math() {
}
/**
* Returns the absolute value of the argument.
* <p>
* Special cases:
* <ul>
* <li>{@code abs(-0.0) = +0.0}</li>
* <li>{@code abs(+infinity) = +infinity}</li>
* <li>{@code abs(-infinity) = +infinity}</li>
* <li>{@code abs(NaN) = NaN}</li>
* </ul>
*/
public static double abs(double d) {
return Double.longBitsToDouble(Double.doubleToRawLongBits(d) & 0x7fffffffffffffffL);
}
/**
* Returns the absolute value of the argument.
* <p>
* Special cases:
* <ul>
* <li>{@code abs(-0.0) = +0.0}</li>
* <li>{@code abs(+infinity) = +infinity}</li>
* <li>{@code abs(-infinity) = +infinity}</li>
* <li>{@code abs(NaN) = NaN}</li>
* </ul>
*/
public static float abs(float f) {
return Float.intBitsToFloat(Float.floatToRawIntBits(f) & 0x7fffffff);
}
/**
* Returns the absolute value of the argument.
* <p>
* If the argument is {@code Integer.MIN_VALUE}, {@code Integer.MIN_VALUE}
* is returned.
*/
public static int abs(int i) {
return (i >= 0) ? i : -i;
}
/**
* Returns the absolute value of the argument. If the argument is {@code
* Long.MIN_VALUE}, {@code Long.MIN_VALUE} is returned.
*/
public static long abs(long l) {
return (l >= 0) ? l : -l;
}
/**
* Returns the closest double approximation of the arc cosine of the
* argument within the range {@code [0..pi]}. The returned result is within
* 1 ulp (unit in the last place) of the real result.
* <p>
* Special cases:
* <ul>
* <li>{@code acos((anything > 1) = NaN}</li>
* <li>{@code acos((anything < -1) = NaN}</li>
* <li>{@code acos(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value to compute arc cosine of.
* @return the arc cosine of the argument.
*/
public static native double acos(double d);
/**
* Returns the closest double approximation of the arc sine of the argument
* within the range {@code [-pi/2..pi/2]}. The returned result is within 1
* ulp (unit in the last place) of the real result.
* <p>
* Special cases:
* <ul>
* <li>{@code asin((anything > 1)) = NaN}</li>
* <li>{@code asin((anything < -1)) = NaN}</li>
* <li>{@code asin(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose arc sine has to be computed.
* @return the arc sine of the argument.
*/
public static native double asin(double d);
/**
* Returns the closest double approximation of the arc tangent of the
* argument within the range {@code [-pi/2..pi/2]}. The returned result is
* within 1 ulp (unit in the last place) of the real result.
* <p>
* Special cases:
* <ul>
* <li>{@code atan(+0.0) = +0.0}</li>
* <li>{@code atan(-0.0) = -0.0}</li>
* <li>{@code atan(+infinity) = +pi/2}</li>
* <li>{@code atan(-infinity) = -pi/2}</li>
* <li>{@code atan(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose arc tangent has to be computed.
* @return the arc tangent of the argument.
*/
public static native double atan(double d);
/**
* Returns the closest double approximation of the arc tangent of {@code
* y/x} within the range {@code [-pi..pi]}. This is the angle of the polar
* representation of the rectangular coordinates (x,y). The returned result
* is within 2 ulps (units in the last place) of the real result.
* <p>
* Special cases:
* <ul>
* <li>{@code atan2((anything), NaN ) = NaN;}</li>
* <li>{@code atan2(NaN , (anything) ) = NaN;}</li>
* <li>{@code atan2(+0.0, +(anything but NaN)) = +0.0}</li>
* <li>{@code atan2(-0.0, +(anything but NaN)) = -0.0}</li>
* <li>{@code atan2(+0.0, -(anything but NaN)) = +pi}</li>
* <li>{@code atan2(-0.0, -(anything but NaN)) = -pi}</li>
* <li>{@code atan2(+(anything but 0 and NaN), 0) = +pi/2}</li>
* <li>{@code atan2(-(anything but 0 and NaN), 0) = -pi/2}</li>
* <li>{@code atan2(+(anything but infinity and NaN), +infinity)} {@code =}
* {@code +0.0}</li>
* <li>{@code atan2(-(anything but infinity and NaN), +infinity)} {@code =}
* {@code -0.0}</li>
* <li>{@code atan2(+(anything but infinity and NaN), -infinity) = +pi}</li>
* <li>{@code atan2(-(anything but infinity and NaN), -infinity) = -pi}</li>
* <li>{@code atan2(+infinity, +infinity ) = +pi/4}</li>
* <li>{@code atan2(-infinity, +infinity ) = -pi/4}</li>
* <li>{@code atan2(+infinity, -infinity ) = +3pi/4}</li>
* <li>{@code atan2(-infinity, -infinity ) = -3pi/4}</li>
* <li>{@code atan2(+infinity, (anything but,0, NaN, and infinity))} {@code
* =} {@code +pi/2}</li>
* <li>{@code atan2(-infinity, (anything but,0, NaN, and infinity))} {@code
* =} {@code -pi/2}</li>
* </ul>
*
* @param y
* the numerator of the value whose atan has to be computed.
* @param x
* the denominator of the value whose atan has to be computed.
* @return the arc tangent of {@code y/x}.
*/
public static native double atan2(double y, double x);
/**
* Returns the closest double approximation of the cube root of the
* argument.
* <p>
* Special cases:
* <ul>
* <li>{@code cbrt(+0.0) = +0.0}</li>
* <li>{@code cbrt(-0.0) = -0.0}</li>
* <li>{@code cbrt(+infinity) = +infinity}</li>
* <li>{@code cbrt(-infinity) = -infinity}</li>
* <li>{@code cbrt(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose cube root has to be computed.
* @return the cube root of the argument.
*/
public static native double cbrt(double d);
/**
* Returns the double conversion of the most negative (closest to negative
* infinity) integer value greater than or equal to the argument.
* <p>
* Special cases:
* <ul>
* <li>{@code ceil(+0.0) = +0.0}</li>
* <li>{@code ceil(-0.0) = -0.0}</li>
* <li>{@code ceil((anything in range (-1,0)) = -0.0}</li>
* <li>{@code ceil(+infinity) = +infinity}</li>
* <li>{@code ceil(-infinity) = -infinity}</li>
* <li>{@code ceil(NaN) = NaN}</li>
* </ul>
*/
public static native double ceil(double d);
/**
* Returns the closest double approximation of the cosine of the argument.
* The returned result is within 1 ulp (unit in the last place) of the real
* result.
* <p>
* Special cases:
* <ul>
* <li>{@code cos(+infinity) = NaN}</li>
* <li>{@code cos(-infinity) = NaN}</li>
* <li>{@code cos(NaN) = NaN}</li>
* </ul>
*
* @param d
* the angle whose cosine has to be computed, in radians.
* @return the cosine of the argument.
*/
public static native double cos(double d);
/**
* Returns the closest double approximation of the hyperbolic cosine of the
* argument. The returned result is within 2.5 ulps (units in the last
* place) of the real result.
* <p>
* Special cases:
* <ul>
* <li>{@code cosh(+infinity) = +infinity}</li>
* <li>{@code cosh(-infinity) = +infinity}</li>
* <li>{@code cosh(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose hyperbolic cosine has to be computed.
* @return the hyperbolic cosine of the argument.
*/
public static native double cosh(double d);
/**
* Returns the closest double approximation of the raising "e" to the power
* of the argument. The returned result is within 1 ulp (unit in the last
* place) of the real result.
* <p>
* Special cases:
* <ul>
* <li>{@code exp(+infinity) = +infinity}</li>
* <li>{@code exp(-infinity) = +0.0}</li>
* <li>{@code exp(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose exponential has to be computed.
* @return the exponential of the argument.
*/
public static native double exp(double d);
/**
* Returns the closest double approximation of <i>{@code e}</i><sup> {@code
* d}</sup>{@code - 1}. If the argument is very close to 0, it is much more
* accurate to use {@code expm1(d)+1} than {@code exp(d)} (due to
* cancellation of significant digits). The returned result is within 1 ulp
* (unit in the last place) of the real result.
* <p>
* For any finite input, the result is not less than -1.0. If the real
* result is within 0.5 ulp of -1, -1.0 is returned.
* <p>
* Special cases:
* <ul>
* <li>{@code expm1(+0.0) = +0.0}</li>
* <li>{@code expm1(-0.0) = -0.0}</li>
* <li>{@code expm1(+infinity) = +infinity}</li>
* <li>{@code expm1(-infinity) = -1.0}</li>
* <li>{@code expm1(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value to compute the <i>{@code e}</i><sup>{@code d} </sup>
* {@code - 1} of.
* @return the <i>{@code e}</i><sup>{@code d}</sup>{@code - 1} value of the
* argument.
*/
public static native double expm1(double d);
/**
* Returns the double conversion of the most positive (closest to positive
* infinity) integer value less than or equal to the argument.
* <p>
* Special cases:
* <ul>
* <li>{@code floor(+0.0) = +0.0}</li>
* <li>{@code floor(-0.0) = -0.0}</li>
* <li>{@code floor(+infinity) = +infinity}</li>
* <li>{@code floor(-infinity) = -infinity}</li>
* <li>{@code floor(NaN) = NaN}</li>
* </ul>
*/
public static native double floor(double d);
/**
* Returns {@code sqrt(}<i>{@code x}</i><sup>{@code 2}</sup>{@code +} <i>
* {@code y}</i><sup>{@code 2}</sup>{@code )}. The final result is without
* medium underflow or overflow. The returned result is within 1 ulp (unit
* in the last place) of the real result. If one parameter remains constant,
* the result should be semi-monotonic.
* <p>
* Special cases:
* <ul>
* <li>{@code hypot(+infinity, (anything including NaN)) = +infinity}</li>
* <li>{@code hypot(-infinity, (anything including NaN)) = +infinity}</li>
* <li>{@code hypot((anything including NaN), +infinity) = +infinity}</li>
* <li>{@code hypot((anything including NaN), -infinity) = +infinity}</li>
* <li>{@code hypot(NaN, NaN) = NaN}</li>
* </ul>
*
* @param x
* a double number.
* @param y
* a double number.
* @return the {@code sqrt(}<i>{@code x}</i><sup>{@code 2}</sup>{@code +}
* <i> {@code y}</i><sup>{@code 2}</sup>{@code )} value of the
* arguments.
*/
public static native double hypot(double x, double y);
/**
* Returns the remainder of dividing {@code x} by {@code y} using the IEEE
* 754 rules. The result is {@code x-round(x/p)*p} where {@code round(x/p)}
* is the nearest integer (rounded to even), but without numerical
* cancellation problems.
* <p>
* Special cases:
* <ul>
* <li>{@code IEEEremainder((anything), 0) = NaN}</li>
* <li>{@code IEEEremainder(+infinity, (anything)) = NaN}</li>
* <li>{@code IEEEremainder(-infinity, (anything)) = NaN}</li>
* <li>{@code IEEEremainder(NaN, (anything)) = NaN}</li>
* <li>{@code IEEEremainder((anything), NaN) = NaN}</li>
* <li>{@code IEEEremainder(x, +infinity) = x } where x is anything but
* +/-infinity</li>
* <li>{@code IEEEremainder(x, -infinity) = x } where x is anything but
* +/-infinity</li>
* </ul>
*
* @param x
* the numerator of the operation.
* @param y
* the denominator of the operation.
* @return the IEEE754 floating point reminder of of {@code x/y}.
*/
public static native double IEEEremainder(double x, double y);
/**
* Returns the closest double approximation of the natural logarithm of the
* argument. The returned result is within 1 ulp (unit in the last place) of
* the real result.
* <p>
* Special cases:
* <ul>
* <li>{@code log(+0.0) = -infinity}</li>
* <li>{@code log(-0.0) = -infinity}</li>
* <li>{@code log((anything < 0) = NaN}</li>
* <li>{@code log(+infinity) = +infinity}</li>
* <li>{@code log(-infinity) = NaN}</li>
* <li>{@code log(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose log has to be computed.
* @return the natural logarithm of the argument.
*/
public static native double log(double d);
/**
* Returns the closest double approximation of the base 10 logarithm of the
* argument. The returned result is within 1 ulp (unit in the last place) of
* the real result.
* <p>
* Special cases:
* <ul>
* <li>{@code log10(+0.0) = -infinity}</li>
* <li>{@code log10(-0.0) = -infinity}</li>
* <li>{@code log10((anything < 0) = NaN}</li>
* <li>{@code log10(+infinity) = +infinity}</li>
* <li>{@code log10(-infinity) = NaN}</li>
* <li>{@code log10(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose base 10 log has to be computed.
* @return the natural logarithm of the argument.
*/
public static native double log10(double d);
/**
* Returns the closest double approximation of the natural logarithm of the
* sum of the argument and 1. If the argument is very close to 0, it is much
* more accurate to use {@code log1p(d)} than {@code log(1.0+d)} (due to
* numerical cancellation). The returned result is within 1 ulp (unit in the
* last place) of the real result and is semi-monotonic.
* <p>
* Special cases:
* <ul>
* <li>{@code log1p(+0.0) = +0.0}</li>
* <li>{@code log1p(-0.0) = -0.0}</li>
* <li>{@code log1p((anything < 1)) = NaN}</li>
* <li>{@code log1p(-1.0) = -infinity}</li>
* <li>{@code log1p(+infinity) = +infinity}</li>
* <li>{@code log1p(-infinity) = NaN}</li>
* <li>{@code log1p(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value to compute the {@code ln(1+d)} of.
* @return the natural logarithm of the sum of the argument and 1.
*/
public static native double log1p(double d);
/**
* Returns the most positive (closest to positive infinity) of the two
* arguments.
* <p>
* Special cases:
* <ul>
* <li>{@code max(NaN, (anything)) = NaN}</li>
* <li>{@code max((anything), NaN) = NaN}</li>
* <li>{@code max(+0.0, -0.0) = +0.0}</li>
* <li>{@code max(-0.0, +0.0) = +0.0}</li>
* </ul>
*/
public static double max(double d1, double d2) {
if (d1 > d2) {
return d1;
}
if (d1 < d2) {
return d2;
}
/* if either arg is NaN, return NaN */
if (d1 != d2) {
return Double.NaN;
}
/* max(+0.0,-0.0) == +0.0 */
/* Double.doubleToRawLongBits(0.0d) == 0 */
if (Double.doubleToRawLongBits(d1) != 0) {
return d2;
}
return 0.0d;
}
/**
* Returns the most positive (closest to positive infinity) of the two
* arguments.
* <p>
* Special cases:
* <ul>
* <li>{@code max(NaN, (anything)) = NaN}</li>
* <li>{@code max((anything), NaN) = NaN}</li>
* <li>{@code max(+0.0, -0.0) = +0.0}</li>
* <li>{@code max(-0.0, +0.0) = +0.0}</li>
* </ul>
*/
public static float max(float f1, float f2) {
if (f1 > f2) {
return f1;
}
if (f1 < f2) {
return f2;
}
/* if either arg is NaN, return NaN */
if (f1 != f2) {
return Float.NaN;
}
/* max(+0.0,-0.0) == +0.0 */
/* Float.floatToRawIntBits(0.0f) == 0*/
if (Float.floatToRawIntBits(f1) != 0) {
return f2;
}
return 0.0f;
}
/**
* Returns the most positive (closest to positive infinity) of the two
* arguments.
*/
public static int max(int i1, int i2) {
return i1 > i2 ? i1 : i2;
}
/**
* Returns the most positive (closest to positive infinity) of the two
* arguments.
*/
public static long max(long l1, long l2) {
return l1 > l2 ? l1 : l2;
}
/**
* Returns the most negative (closest to negative infinity) of the two
* arguments.
* <p>
* Special cases:
* <ul>
* <li>{@code min(NaN, (anything)) = NaN}</li>
* <li>{@code min((anything), NaN) = NaN}</li>
* <li>{@code min(+0.0, -0.0) = -0.0}</li>
* <li>{@code min(-0.0, +0.0) = -0.0}</li>
* </ul>
*/
public static double min(double d1, double d2) {
if (d1 > d2) {
return d2;
}
if (d1 < d2) {
return d1;
}
/* if either arg is NaN, return NaN */
if (d1 != d2) {
return Double.NaN;
}
/* min(+0.0,-0.0) == -0.0 */
/* 0x8000000000000000L == Double.doubleToRawLongBits(-0.0d) */
if (Double.doubleToRawLongBits(d1) == 0x8000000000000000L) {
return -0.0d;
}
return d2;
}
/**
* Returns the most negative (closest to negative infinity) of the two
* arguments.
* <p>
* Special cases:
* <ul>
* <li>{@code min(NaN, (anything)) = NaN}</li>
* <li>{@code min((anything), NaN) = NaN}</li>
* <li>{@code min(+0.0, -0.0) = -0.0}</li>
* <li>{@code min(-0.0, +0.0) = -0.0}</li>
* </ul>
*/
public static float min(float f1, float f2) {
if (f1 > f2) {
return f2;
}
if (f1 < f2) {
return f1;
}
/* if either arg is NaN, return NaN */
if (f1 != f2) {
return Float.NaN;
}
/* min(+0.0,-0.0) == -0.0 */
/* 0x80000000 == Float.floatToRawIntBits(-0.0f) */
if (Float.floatToRawIntBits(f1) == 0x80000000) {
return -0.0f;
}
return f2;
}
/**
* Returns the most negative (closest to negative infinity) of the two
* arguments.
*/
public static int min(int i1, int i2) {
return i1 < i2 ? i1 : i2;
}
/**
* Returns the most negative (closest to negative infinity) of the two
* arguments.
*/
public static long min(long l1, long l2) {
return l1 < l2 ? l1 : l2;
}
/**
* Returns the closest double approximation of the result of raising {@code
* x} to the power of {@code y}.
* <p>
* Special cases:
* <ul>
* <li>{@code pow((anything), +0.0) = 1.0}</li>
* <li>{@code pow((anything), -0.0) = 1.0}</li>
* <li>{@code pow(x, 1.0) = x}</li>
* <li>{@code pow((anything), NaN) = NaN}</li>
* <li>{@code pow(NaN, (anything except 0)) = NaN}</li>
* <li>{@code pow(+/-(|x| > 1), +infinity) = +infinity}</li>
* <li>{@code pow(+/-(|x| > 1), -infinity) = +0.0}</li>
* <li>{@code pow(+/-(|x| < 1), +infinity) = +0.0}</li>
* <li>{@code pow(+/-(|x| < 1), -infinity) = +infinity}</li>
* <li>{@code pow(+/-1.0 , +infinity) = NaN}</li>
* <li>{@code pow(+/-1.0 , -infinity) = NaN}</li>
* <li>{@code pow(+0.0, (+anything except 0, NaN)) = +0.0}</li>
* <li>{@code pow(-0.0, (+anything except 0, NaN, odd integer)) = +0.0}</li>
* <li>{@code pow(+0.0, (-anything except 0, NaN)) = +infinity}</li>
* <li>{@code pow(-0.0, (-anything except 0, NAN, odd integer))} {@code =}
* {@code +infinity}</li>
* <li>{@code pow(-0.0, (odd integer)) = -pow( +0 , (odd integer) )}</li>
* <li>{@code pow(+infinity, (+anything except 0, NaN)) = +infinity}</li>
* <li>{@code pow(+infinity, (-anything except 0, NaN)) = +0.0}</li>
* <li>{@code pow(-infinity, (anything)) = -pow(0, (-anything))}</li>
* <li>{@code pow((-anything), (integer))} {@code =} {@code
* pow(-1,(integer))*pow(+anything,integer) }</li>
* <li>{@code pow((-anything except 0 and inf), (non-integer)) = NAN}</li>
* </ul>
*
* @param x
* the base of the operation.
* @param y
* the exponent of the operation.
* @return {@code x} to the power of {@code y}.
*/
public static native double pow(double x, double y);
/**
* Returns the double conversion of the result of rounding the argument to
* an integer. Tie breaks are rounded towards even.
* <p>
* Special cases:
* <ul>
* <li>{@code rint(+0.0) = +0.0}</li>
* <li>{@code rint(-0.0) = -0.0}</li>
* <li>{@code rint(+infinity) = +infinity}</li>
* <li>{@code rint(-infinity) = -infinity}</li>
* <li>{@code rint(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value to be rounded.
* @return the closest integer to the argument (as a double).
*/
public static native double rint(double d);
/**
* Returns the result of rounding the argument to an integer. The result is
* equivalent to {@code (long) Math.floor(d+0.5)}.
* <p>
* Special cases:
* <ul>
* <li>{@code round(+0.0) = +0.0}</li>
* <li>{@code round(-0.0) = +0.0}</li>
* <li>{@code round((anything > Long.MAX_VALUE) = Long.MAX_VALUE}</li>
* <li>{@code round((anything < Long.MIN_VALUE) = Long.MIN_VALUE}</li>
* <li>{@code round(+infinity) = Long.MAX_VALUE}</li>
* <li>{@code round(-infinity) = Long.MIN_VALUE}</li>
* <li>{@code round(NaN) = +0.0}</li>
* </ul>
*
* @param d
* the value to be rounded.
* @return the closest integer to the argument.
*/
public static long round(double d) {
// check for NaN
if (d != d) {
return 0L;
}
return (long) floor(d + 0.5d);
}
/**
* Returns the result of rounding the argument to an integer. The result is
* equivalent to {@code (int) Math.floor(f+0.5)}.
* <p>
* Special cases:
* <ul>
* <li>{@code round(+0.0) = +0.0}</li>
* <li>{@code round(-0.0) = +0.0}</li>
* <li>{@code round((anything > Integer.MAX_VALUE) = Integer.MAX_VALUE}</li>
* <li>{@code round((anything < Integer.MIN_VALUE) = Integer.MIN_VALUE}</li>
* <li>{@code round(+infinity) = Integer.MAX_VALUE}</li>
* <li>{@code round(-infinity) = Integer.MIN_VALUE}</li>
* <li>{@code round(NaN) = +0.0}</li>
* </ul>
*
* @param f
* the value to be rounded.
* @return the closest integer to the argument.
*/
public static int round(float f) {
// check for NaN
if (f != f) {
return 0;
}
return (int) floor(f + 0.5f);
}
/**
* Returns the signum function of the argument. If the argument is less than
* zero, it returns -1.0. If the argument is greater than zero, 1.0 is
* returned. If the argument is either positive or negative zero, the
* argument is returned as result.
* <p>
* Special cases:
* <ul>
* <li>{@code signum(+0.0) = +0.0}</li>
* <li>{@code signum(-0.0) = -0.0}</li>
* <li>{@code signum(+infinity) = +1.0}</li>
* <li>{@code signum(-infinity) = -1.0}</li>
* <li>{@code signum(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose signum has to be computed.
* @return the value of the signum function.
*/
public static double signum(double d) {
if (Double.isNaN(d)) {
return Double.NaN;
}
double sig = d;
if (d > 0) {
sig = 1.0;
} else if (d < 0) {
sig = -1.0;
}
return sig;
}
/**
* Returns the signum function of the argument. If the argument is less than
* zero, it returns -1.0. If the argument is greater than zero, 1.0 is
* returned. If the argument is either positive or negative zero, the
* argument is returned as result.
* <p>
* Special cases:
* <ul>
* <li>{@code signum(+0.0) = +0.0}</li>
* <li>{@code signum(-0.0) = -0.0}</li>
* <li>{@code signum(+infinity) = +1.0}</li>
* <li>{@code signum(-infinity) = -1.0}</li>
* <li>{@code signum(NaN) = NaN}</li>
* </ul>
*
* @param f
* the value whose signum has to be computed.
* @return the value of the signum function.
*/
public static float signum(float f) {
if (Float.isNaN(f)) {
return Float.NaN;
}
float sig = f;
if (f > 0) {
sig = 1.0f;
} else if (f < 0) {
sig = -1.0f;
}
return sig;
}
/**
* Returns the closest double approximation of the sine of the argument. The
* returned result is within 1 ulp (unit in the last place) of the real
* result.
* <p>
* Special cases:
* <ul>
* <li>{@code sin(+0.0) = +0.0}</li>
* <li>{@code sin(-0.0) = -0.0}</li>
* <li>{@code sin(+infinity) = NaN}</li>
* <li>{@code sin(-infinity) = NaN}</li>
* <li>{@code sin(NaN) = NaN}</li>
* </ul>
*
* @param d
* the angle whose sin has to be computed, in radians.
* @return the sine of the argument.
*/
public static native double sin(double d);
/**
* Returns the closest double approximation of the hyperbolic sine of the
* argument. The returned result is within 2.5 ulps (units in the last
* place) of the real result.
* <p>
* Special cases:
* <ul>
* <li>{@code sinh(+0.0) = +0.0}</li>
* <li>{@code sinh(-0.0) = -0.0}</li>
* <li>{@code sinh(+infinity) = +infinity}</li>
* <li>{@code sinh(-infinity) = -infinity}</li>
* <li>{@code sinh(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose hyperbolic sine has to be computed.
* @return the hyperbolic sine of the argument.
*/
public static native double sinh(double d);
/**
* Returns the closest double approximation of the square root of the
* argument.
* <p>
* Special cases:
* <ul>
* <li>{@code sqrt(+0.0) = +0.0}</li>
* <li>{@code sqrt(-0.0) = -0.0}</li>
* <li>{@code sqrt( (anything < 0) ) = NaN}</li>
* <li>{@code sqrt(+infinity) = +infinity}</li>
* <li>{@code sqrt(NaN) = NaN}</li>
* </ul>
*/
public static native double sqrt(double d);
/**
* Returns the closest double approximation of the tangent of the argument.
* The returned result is within 1 ulp (unit in the last place) of the real
* result.
* <p>
* Special cases:
* <ul>
* <li>{@code tan(+0.0) = +0.0}</li>
* <li>{@code tan(-0.0) = -0.0}</li>
* <li>{@code tan(+infinity) = NaN}</li>
* <li>{@code tan(-infinity) = NaN}</li>
* <li>{@code tan(NaN) = NaN}</li>
* </ul>
*
* @param d
* the angle whose tangent has to be computed, in radians.
* @return the tangent of the argument.
*/
public static native double tan(double d);
/**
* Returns the closest double approximation of the hyperbolic tangent of the
* argument. The absolute value is always less than 1. The returned result
* is within 2.5 ulps (units in the last place) of the real result. If the
* real result is within 0.5ulp of 1 or -1, it should return exactly +1 or
* -1.
* <p>
* Special cases:
* <ul>
* <li>{@code tanh(+0.0) = +0.0}</li>
* <li>{@code tanh(-0.0) = -0.0}</li>
* <li>{@code tanh(+infinity) = +1.0}</li>
* <li>{@code tanh(-infinity) = -1.0}</li>
* <li>{@code tanh(NaN) = NaN}</li>
* </ul>
*
* @param d
* the value whose hyperbolic tangent has to be computed.
* @return the hyperbolic tangent of the argument.
*/
public static native double tanh(double d);
/**
* Returns a pseudo-random double {@code n}, where {@code n >= 0.0 && n < 1.0}.
* This method reuses a single instance of {@link java.util.Random}.
* This method is thread-safe because access to the {@code Random} is synchronized,
* but this harms scalability. Applications may find a performance benefit from
* allocating a {@code Random} for each of their threads.
*
* @return a pseudo-random number.
*/
public static double random() {
return NoImagePreloadHolder.INSTANCE.nextDouble();
}
/**
* Set the seed for the pseudo random generator used by {@link #random()}
* and {@link #randomIntInternal()}.
*
* @hide for internal use only.
*/
public static void setRandomSeedInternal(long seed) {
NoImagePreloadHolder.INSTANCE.setSeed(seed);
}
/**
* @hide for internal use only.
*/
public static int randomIntInternal() {
return NoImagePreloadHolder.INSTANCE.nextInt();
}
/**
* Returns the measure in radians of the supplied degree angle. The result
* is {@code angdeg / 180 * pi}.
* <p>
* Special cases:
* <ul>
* <li>{@code toRadians(+0.0) = +0.0}</li>
* <li>{@code toRadians(-0.0) = -0.0}</li>
* <li>{@code toRadians(+infinity) = +infinity}</li>
* <li>{@code toRadians(-infinity) = -infinity}</li>
* <li>{@code toRadians(NaN) = NaN}</li>
* </ul>
*
* @param angdeg
* an angle in degrees.
* @return the radian measure of the angle.
*/
public static double toRadians(double angdeg) {
return angdeg / 180d * PI;
}
/**
* Returns the measure in degrees of the supplied radian angle. The result
* is {@code angrad * 180 / pi}.
* <p>
* Special cases:
* <ul>
* <li>{@code toDegrees(+0.0) = +0.0}</li>
* <li>{@code toDegrees(-0.0) = -0.0}</li>
* <li>{@code toDegrees(+infinity) = +infinity}</li>
* <li>{@code toDegrees(-infinity) = -infinity}</li>
* <li>{@code toDegrees(NaN) = NaN}</li>
* </ul>
*
* @param angrad
* an angle in radians.
* @return the degree measure of the angle.
*/
public static double toDegrees(double angrad) {
return angrad * 180d / PI;
}
/**
* Returns the argument's ulp (unit in the last place). The size of a ulp of
* a double value is the positive distance between this value and the double
* value next larger in magnitude. For non-NaN {@code x}, {@code ulp(-x) ==
* ulp(x)}.
* <p>
* Special cases:
* <ul>
* <li>{@code ulp(+0.0) = Double.MIN_VALUE}</li>
* <li>{@code ulp(-0.0) = Double.MIN_VALUE}</li>
* <li>{@code ulp(+infinity) = infinity}</li>
* <li>{@code ulp(-infinity) = infinity}</li>
* <li>{@code ulp(NaN) = NaN}</li>
* </ul>
*
* @param d
* the floating-point value to compute ulp of.
* @return the size of a ulp of the argument.
*/
public static double ulp(double d) {
// special cases
if (Double.isInfinite(d)) {
return Double.POSITIVE_INFINITY;
} else if (d == Double.MAX_VALUE || d == -Double.MAX_VALUE) {
return pow(2, 971);
}
d = abs(d);
return nextafter(d, Double.MAX_VALUE) - d;
}
private static native double nextafter(double x, double y);
/**
* Returns the argument's ulp (unit in the last place). The size of a ulp of
* a float value is the positive distance between this value and the float
* value next larger in magnitude. For non-NaN {@code x}, {@code ulp(-x) ==
* ulp(x)}.
* <p>
* Special cases:
* <ul>
* <li>{@code ulp(+0.0) = Float.MIN_VALUE}</li>
* <li>{@code ulp(-0.0) = Float.MIN_VALUE}</li>
* <li>{@code ulp(+infinity) = infinity}</li>
* <li>{@code ulp(-infinity) = infinity}</li>
* <li>{@code ulp(NaN) = NaN}</li>
* </ul>
*
* @param f
* the floating-point value to compute ulp of.
* @return the size of a ulp of the argument.
*/
public static float ulp(float f) {
// special cases
if (Float.isNaN(f)) {
return Float.NaN;
} else if (Float.isInfinite(f)) {
return Float.POSITIVE_INFINITY;
} else if (f == Float.MAX_VALUE || f == -Float.MAX_VALUE) {
return (float) pow(2, 104);
}
f = Math.abs(f);
int hx = Float.floatToRawIntBits(f);
int hy = Float.floatToRawIntBits(Float.MAX_VALUE);
if ((hx & 0x7fffffff) == 0) { /* f == 0 */
return Float.intBitsToFloat((hy & 0x80000000) | 0x1);
}
if ((hx > 0) ^ (hx > hy)) { /* |f| < |Float.MAX_VALUE| */
hx += 1;
} else {
hx -= 1;
}
return Float.intBitsToFloat(hx) - f;
}
/**
* Returns a double with the given magnitude and the sign of {@code sign}.
* If {@code sign} is NaN, the sign of the result is arbitrary.
* If you need a determinate sign in such cases, use {@code StrictMath.copySign}.
* @since 1.6
*/
public static double copySign(double magnitude, double sign) {
long magnitudeBits = Double.doubleToRawLongBits(magnitude);
long signBits = Double.doubleToRawLongBits(sign);
magnitudeBits = (magnitudeBits & ~Double.SIGN_MASK) | (signBits & Double.SIGN_MASK);
return Double.longBitsToDouble(magnitudeBits);
}
/**
* Returns a float with the given magnitude and the sign of {@code sign}.
* If {@code sign} is NaN, the sign of the result is arbitrary.
* If you need a determinate sign in such cases, use {@code StrictMath.copySign}.
* @since 1.6
*/
public static float copySign(float magnitude, float sign) {
int magnitudeBits = Float.floatToRawIntBits(magnitude);
int signBits = Float.floatToRawIntBits(sign);
magnitudeBits = (magnitudeBits & ~Float.SIGN_MASK) | (signBits & Float.SIGN_MASK);
return Float.intBitsToFloat(magnitudeBits);
}
/**
* Returns the unbiased base-2 exponent of float {@code f}.
* @since 1.6
*/
public static int getExponent(float f) {
int bits = Float.floatToRawIntBits(f);
bits = (bits & Float.EXPONENT_MASK) >> Float.MANTISSA_BITS;
return bits - Float.EXPONENT_BIAS;
}
/**
* Returns the unbiased base-2 exponent of double {@code d}.
* @since 1.6
*/
public static int getExponent(double d) {
long bits = Double.doubleToRawLongBits(d);
bits = (bits & Double.EXPONENT_MASK) >> Double.MANTISSA_BITS;
return (int) bits - Double.EXPONENT_BIAS;
}
/**
* Returns the next double after {@code start} in the given {@code direction}.
* @since 1.6
*/
public static double nextAfter(double start, double direction) {
if (start == 0 && direction == 0) {
return direction;
}
return nextafter(start, direction);
}
/**
* Returns the next float after {@code start} in the given {@code direction}.
* @since 1.6
*/
public static float nextAfter(float start, double direction) {
if (Float.isNaN(start) || Double.isNaN(direction)) {
return Float.NaN;
}
if (start == 0 && direction == 0) {
return (float) direction;
}
if ((start == Float.MIN_VALUE && direction < start)
|| (start == -Float.MIN_VALUE && direction > start)) {
return (start > 0 ? 0f : -0f);
}
if (Float.isInfinite(start) && (direction != start)) {
return (start > 0 ? Float.MAX_VALUE : -Float.MAX_VALUE);
}
if ((start == Float.MAX_VALUE && direction > start)
|| (start == -Float.MAX_VALUE && direction < start)) {
return (start > 0 ? Float.POSITIVE_INFINITY
: Float.NEGATIVE_INFINITY);
}
if (direction > start) {
if (start > 0) {
return Float.intBitsToFloat(Float.floatToIntBits(start) + 1);
}
if (start < 0) {
return Float.intBitsToFloat(Float.floatToIntBits(start) - 1);
}
return +Float.MIN_VALUE;
}
if (direction < start) {
if (start > 0) {
return Float.intBitsToFloat(Float.floatToIntBits(start) - 1);
}
if (start < 0) {
return Float.intBitsToFloat(Float.floatToIntBits(start) + 1);
}
return -Float.MIN_VALUE;
}
return (float) direction;
}
/**
* Returns the next double larger than {@code d}.
* @since 1.6
*/
public static double nextUp(double d) {
if (Double.isNaN(d)) {
return Double.NaN;
}
if (d == Double.POSITIVE_INFINITY) {
return Double.POSITIVE_INFINITY;
}
if (d == 0) {
return Double.MIN_VALUE;
} else if (d > 0) {
return Double.longBitsToDouble(Double.doubleToLongBits(d) + 1);
} else {
return Double.longBitsToDouble(Double.doubleToLongBits(d) - 1);
}
}
/**
* Returns the next float larger than {@code f}.
* @since 1.6
*/
public static float nextUp(float f) {
if (Float.isNaN(f)) {
return Float.NaN;
}
if (f == Float.POSITIVE_INFINITY) {
return Float.POSITIVE_INFINITY;
}
if (f == 0) {
return Float.MIN_VALUE;
} else if (f > 0) {
return Float.intBitsToFloat(Float.floatToIntBits(f) + 1);
} else {
return Float.intBitsToFloat(Float.floatToIntBits(f) - 1);
}
}
/**
* Returns {@code d} * 2^{@code scaleFactor}. The result may be rounded.
* @since 1.6
*/
public static double scalb(double d, int scaleFactor) {
if (Double.isNaN(d) || Double.isInfinite(d) || d == 0) {
return d;
}
// change double to long for calculation
long bits = Double.doubleToLongBits(d);
// the sign of the results must be the same of given d
long sign = bits & Double.SIGN_MASK;
// calculates the factor of the result
long factor = ((bits & Double.EXPONENT_MASK) >> Double.MANTISSA_BITS)
- Double.EXPONENT_BIAS + scaleFactor;
// calculates the factor of sub-normal values
int subNormalFactor = Long.numberOfLeadingZeros(bits & ~Double.SIGN_MASK)
- Double.NON_MANTISSA_BITS;
if (subNormalFactor < 0) {
// not sub-normal values
subNormalFactor = 0;
} else {
factor = factor - subNormalFactor;
}
if (factor > Double.MAX_EXPONENT) {
return (d > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY);
}
long result;
// if result is a sub-normal
if (factor <= -Double.EXPONENT_BIAS) {
// the number of digits that shifts
long digits = factor + Double.EXPONENT_BIAS + subNormalFactor;
if (Math.abs(d) < Double.MIN_NORMAL) {
// origin d is already sub-normal
result = shiftLongBits(bits & Double.MANTISSA_MASK, digits);
} else {
// origin d is not sub-normal, change mantissa to sub-normal
result = shiftLongBits(bits & Double.MANTISSA_MASK | 0x0010000000000000L, digits - 1);
}
} else {
if (Math.abs(d) >= Double.MIN_NORMAL) {
// common situation
result = ((factor + Double.EXPONENT_BIAS) << Double.MANTISSA_BITS)
| (bits & Double.MANTISSA_MASK);
} else {
// origin d is sub-normal, change mantissa to normal style
result = ((factor + Double.EXPONENT_BIAS) << Double.MANTISSA_BITS)
| ((bits << (subNormalFactor + 1)) & Double.MANTISSA_MASK);
}
}
return Double.longBitsToDouble(result | sign);
}
/**
* Returns {@code d} * 2^{@code scaleFactor}. The result may be rounded.
* @since 1.6
*/
public static float scalb(float d, int scaleFactor) {
if (Float.isNaN(d) || Float.isInfinite(d) || d == 0) {
return d;
}
int bits = Float.floatToIntBits(d);
int sign = bits & Float.SIGN_MASK;
int factor = ((bits & Float.EXPONENT_MASK) >> Float.MANTISSA_BITS)
- Float.EXPONENT_BIAS + scaleFactor;
// calculates the factor of sub-normal values
int subNormalFactor = Integer.numberOfLeadingZeros(bits & ~Float.SIGN_MASK)
- Float.NON_MANTISSA_BITS;
if (subNormalFactor < 0) {
// not sub-normal values
subNormalFactor = 0;
} else {
factor = factor - subNormalFactor;
}
if (factor > Float.MAX_EXPONENT) {
return (d > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY);
}
int result;
// if result is a sub-normal
if (factor <= -Float.EXPONENT_BIAS) {
// the number of digits that shifts
int digits = factor + Float.EXPONENT_BIAS + subNormalFactor;
if (Math.abs(d) < Float.MIN_NORMAL) {
// origin d is already sub-normal
result = shiftIntBits(bits & Float.MANTISSA_MASK, digits);
} else {
// origin d is not sub-normal, change mantissa to sub-normal
result = shiftIntBits(bits & Float.MANTISSA_MASK | 0x00800000, digits - 1);
}
} else {
if (Math.abs(d) >= Float.MIN_NORMAL) {
// common situation
result = ((factor + Float.EXPONENT_BIAS) << Float.MANTISSA_BITS)
| (bits & Float.MANTISSA_MASK);
} else {
// origin d is sub-normal, change mantissa to normal style
result = ((factor + Float.EXPONENT_BIAS) << Float.MANTISSA_BITS)
| ((bits << (subNormalFactor + 1)) & Float.MANTISSA_MASK);
}
}
return Float.intBitsToFloat(result | sign);
}
// Shifts integer bits as float, if the digits is positive, left-shift; if
// not, shift to right and calculate its carry.
private static int shiftIntBits(int bits, int digits) {
if (digits > 0) {
return bits << digits;
}
// change it to positive
int absDigits = -digits;
if (!(Integer.numberOfLeadingZeros(bits & ~Float.SIGN_MASK) <= (32 - absDigits))) {
return 0;
}
int ret = bits >> absDigits;
boolean halfBit = ((bits >> (absDigits - 1)) & 0x1) == 1;
if (halfBit) {
if (Integer.numberOfTrailingZeros(bits) < (absDigits - 1)) {
ret = ret + 1;
}
if (Integer.numberOfTrailingZeros(bits) == (absDigits - 1)) {
if ((ret & 0x1) == 1) {
ret = ret + 1;
}
}
}
return ret;
}
// Shifts long bits as double, if the digits is positive, left-shift; if
// not, shift to right and calculate its carry.
private static long shiftLongBits(long bits, long digits) {
if (digits > 0) {
return bits << digits;
}
// change it to positive
long absDigits = -digits;
if (!(Long.numberOfLeadingZeros(bits & ~Double.SIGN_MASK) <= (64 - absDigits))) {
return 0;
}
long ret = bits >> absDigits;
boolean halfBit = ((bits >> (absDigits - 1)) & 0x1) == 1;
if (halfBit) {
// some bits will remain after shifting, calculates its carry
// subnormal
if (Long.numberOfTrailingZeros(bits) < (absDigits - 1)) {
ret = ret + 1;
}
if (Long.numberOfTrailingZeros(bits) == (absDigits - 1)) {
if ((ret & 0x1) == 1) {
ret = ret + 1;
}
}
}
return ret;
}
}