/**
* Copyright (c) 2013 Oculus Info Inc.
* http://www.oculusinfo.com/
*
* Released under the MIT License.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package spimedb.cluster.distance;
import java.io.Serializable;
import java.util.Collection;
import java.util.List;
/***
* DistanceFunction is an abstract base class that all Distance functions must extend.
*
* A distance function calculates a double precision dissimilarity score for a pair of objects or
* two collections of objects of the same type.
*
* @author slangevin
*
* @param <T>
*/
public abstract class DistanceFunction<T> implements Serializable {
private static final long serialVersionUID = -3942771973916051670L;
protected final double weight;
public DistanceFunction() {
this(1);
}
/***
* Each distance function produces a distance score
*
* @param weight weight is a scaling factor for the distance score
*/
public DistanceFunction(double weight) {
this.weight = weight;
}
/**
* Return the scaling factor for this distance function
*
* @return weight
*/
public double getWeight() {
return weight;
}
/***
* Abstract distance method that all sub-classes must implement.
*
* @param x
* @param y
* @return a double precision dissimilarity score for the pair of objects x, y
*/
public abstract double distance(T x, T y);
private double[][] createCoverMatrix(Collection<T> x, Collection<T> y) {
double cover[][] = new double[x.size()][y.size()];
int i = 0;
for (T itemx : x) {
int j = 0;
for (T itemy : y) {
cover[i][j] = distance(itemx, itemy);
j++;
}
i++;
}
return cover;
}
/***
* Method to calculate the average minimum distance between two collections of objects.
*
* @param x
* @param y
* @return a double precision dissimilarity score
*/
public double aveMinDistance(List<T> x, List<T> y) {
// covermatrix is an expensive operation - it is only necessary when feature collections are greater than 1
if (x.size() == 1 && y.size() == 1) return distance(x.get(0), y.get(0));
double distance = 0;
double cover[][] = createCoverMatrix(x, y);
for (int i = 0; i < x.size(); i++) {
double min = 1;
for (int j = 0; j < y.size(); j++) {
if (cover[i][j] < min) min = cover[i][j];
}
distance += min;
}
for (int j = 0; j < y.size(); j++) {
double min = 1;
for (int i = 0; i < x.size(); i++) {
if (cover[i][j] < min) min = cover[i][j];
}
distance += min;
}
distance /= (x.size() + y.size());
return distance;
}
/***
* Method to calculate the average maximum distance between two collections of objects.
*
* @param x
* @param y
* @return a double precision dissimilarity score
*/
public double aveMaxDistance(List<T> x, List<T> y) {
// covermatrix is an expensive operation - it is only necessary when feature collections are greater than 1
if (x.size() == 1 && y.size() == 1) return distance(x.get(0), y.get(0));
double distance = 0;
double cover[][] = createCoverMatrix(x, y);
for (int i = 0; i < x.size(); i++) {
double max = 0;
for (int j = 0; j < y.size(); j++) {
if (cover[i][j] > max) max = cover[i][j];
}
distance += max;
}
for (int j = 0; j < y.size(); j++) {
double max = 0;
for (int i = 0; i < x.size(); i++) {
if (cover[i][j] > max) max = cover[i][j];
}
distance += max;
}
distance /= (x.size() + y.size());
return distance;
}
}