/******************************************************************************* * Copyright (c) 2009-2011 Luaj.org. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. ******************************************************************************/ package org.luaj.vm2; /** * Constants for lua limits and opcodes. * <p> * This is a direct translation of C lua distribution header file constants * for bytecode creation and processing. */ public class Lua { /** version is supplied by ant build task */ public static final String _VERSION = "Luaj 0.0"; /** use return values from previous op */ public static final int LUA_MULTRET = -1; // from lopcodes.h /*=========================================================================== We assume that instructions are unsigned numbers. All instructions have an opcode in the first 6 bits. Instructions can have the following fields: `A' : 8 bits `B' : 9 bits `C' : 9 bits `Bx' : 18 bits (`B' and `C' together) `sBx' : signed Bx A signed argument is represented in excess K; that is, the number value is the unsigned value minus K. K is exactly the maximum value for that argument (so that -max is represented by 0, and +max is represented by 2*max), which is half the maximum for the corresponding unsigned argument. ===========================================================================*/ /* basic instruction format */ public static final int iABC = 0; public static final int iABx = 1; public static final int iAsBx = 2; public static final int iAx = 3; /* ** size and position of opcode arguments. */ public static final int SIZE_C = 9; public static final int SIZE_B = 9; public static final int SIZE_Bx = (SIZE_C + SIZE_B); public static final int SIZE_A = 8; public static final int SIZE_Ax = (SIZE_C + SIZE_B + SIZE_A); public static final int SIZE_OP = 6; public static final int POS_OP = 0; public static final int POS_A = (POS_OP + SIZE_OP); public static final int POS_C = (POS_A + SIZE_A); public static final int POS_B = (POS_C + SIZE_C); public static final int POS_Bx = POS_C; public static final int POS_Ax = POS_A; public static final int MAX_OP = ((1<<SIZE_OP)-1); public static final int MAXARG_A = ((1<<SIZE_A)-1); public static final int MAXARG_B = ((1<<SIZE_B)-1); public static final int MAXARG_C = ((1<<SIZE_C)-1); public static final int MAXARG_Bx = ((1<<SIZE_Bx)-1); public static final int MAXARG_sBx = (MAXARG_Bx>>1); /* `sBx' is signed */ public static final int MAXARG_Ax = ((1<<SIZE_Ax)-1); public static final int MASK_OP = ((1<<SIZE_OP)-1)<<POS_OP; public static final int MASK_A = ((1<<SIZE_A)-1)<<POS_A; public static final int MASK_B = ((1<<SIZE_B)-1)<<POS_B; public static final int MASK_C = ((1<<SIZE_C)-1)<<POS_C; public static final int MASK_Bx = ((1<<SIZE_Bx)-1)<<POS_Bx; public static final int MASK_NOT_OP = ~MASK_OP; public static final int MASK_NOT_A = ~MASK_A; public static final int MASK_NOT_B = ~MASK_B; public static final int MASK_NOT_C = ~MASK_C; public static final int MASK_NOT_Bx = ~MASK_Bx; /* ** the following macros help to manipulate instructions */ public static int GET_OPCODE(int i) { return (i >> POS_OP) & MAX_OP; } public static int GETARG_A(int i) { return (i >> POS_A) & MAXARG_A; } public static int GETARG_Ax(int i) { return (i >> POS_Ax) & MAXARG_Ax; } public static int GETARG_B(int i) { return (i >> POS_B) & MAXARG_B; } public static int GETARG_C(int i) { return (i >> POS_C) & MAXARG_C; } public static int GETARG_Bx(int i) { return (i >> POS_Bx) & MAXARG_Bx; } public static int GETARG_sBx(int i) { return ((i >> POS_Bx) & MAXARG_Bx) - MAXARG_sBx; } /* ** Macros to operate RK indices */ /** this bit 1 means constant (0 means register) */ public static final int BITRK = (1 << (SIZE_B - 1)); /** test whether value is a constant */ public static boolean ISK(int x) { return 0 != ((x) & BITRK); } /** gets the index of the constant */ public static int INDEXK(int r) { return ((int)(r) & ~BITRK); } public static final int MAXINDEXRK = (BITRK - 1); /** code a constant index as a RK value */ public static int RKASK(int x) { return ((x) | BITRK); } /** ** invalid register that fits in 8 bits */ public static final int NO_REG = MAXARG_A; /* ** R(x) - register ** Kst(x) - constant (in constant table) ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) */ /* ** grep "ORDER OP" if you change these enums */ /*---------------------------------------------------------------------- name args description ------------------------------------------------------------------------*/ public static final int OP_MOVE = 0;/* A B R(A) := R(B) */ public static final int OP_LOADK = 1;/* A Bx R(A) := Kst(Bx) */ public static final int OP_LOADKX = 2;/* A R(A) := Kst(extra arg) */ public static final int OP_LOADBOOL = 3;/* A B C R(A) := (Bool)B; if (C) pc++ */ public static final int OP_LOADNIL = 4; /* A B R(A) := ... := R(A+B) := nil */ public static final int OP_GETUPVAL = 5; /* A B R(A) := UpValue[B] */ public static final int OP_GETTABUP = 6; /* A B C R(A) := UpValue[B][RK(C)] */ public static final int OP_GETTABLE = 7; /* A B C R(A) := R(B)[RK(C)] */ public static final int OP_SETTABUP = 8; /* A B C UpValue[A][RK(B)] := RK(C) */ public static final int OP_SETUPVAL = 9; /* A B UpValue[B] := R(A) */ public static final int OP_SETTABLE = 10; /* A B C R(A)[RK(B)] := RK(C) */ public static final int OP_NEWTABLE = 11; /* A B C R(A) := {} (size = B,C) */ public static final int OP_SELF = 12; /* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ public static final int OP_ADD = 13; /* A B C R(A) := RK(B) + RK(C) */ public static final int OP_SUB = 14; /* A B C R(A) := RK(B) - RK(C) */ public static final int OP_MUL = 15; /* A B C R(A) := RK(B) * RK(C) */ public static final int OP_DIV = 16; /* A B C R(A) := RK(B) / RK(C) */ public static final int OP_MOD = 17; /* A B C R(A) := RK(B) % RK(C) */ public static final int OP_POW = 18; /* A B C R(A) := RK(B) ^ RK(C) */ public static final int OP_UNM = 19; /* A B R(A) := -R(B) */ public static final int OP_NOT = 20; /* A B R(A) := not R(B) */ public static final int OP_LEN = 21; /* A B R(A) := length of R(B) */ public static final int OP_CONCAT = 22; /* A B C R(A) := R(B).. ... ..R(C) */ public static final int OP_JMP = 23; /* sBx pc+=sBx */ public static final int OP_EQ = 24; /* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ public static final int OP_LT = 25; /* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ public static final int OP_LE = 26; /* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ public static final int OP_TEST = 27; /* A C if not (R(A) <=> C) then pc++ */ public static final int OP_TESTSET = 28; /* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ public static final int OP_CALL = 29; /* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ public static final int OP_TAILCALL = 30; /* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ public static final int OP_RETURN = 31; /* A B return R(A), ... ,R(A+B-2) (see note) */ public static final int OP_FORLOOP = 32; /* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ public static final int OP_FORPREP = 33; /* A sBx R(A)-=R(A+2); pc+=sBx */ public static final int OP_TFORCALL = 34; /* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ public static final int OP_TFORLOOP = 35; /* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx } */ public static final int OP_SETLIST = 36; /* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ public static final int OP_CLOSURE = 37; /* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ public static final int OP_VARARG = 38; /* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ public static final int OP_EXTRAARG = 39; /* Ax extra (larger) argument for previous opcode */ public static final int NUM_OPCODES = OP_EXTRAARG + 1; /* pseudo-opcodes used in parsing only. */ public static final int OP_GT = 63; // > public static final int OP_GE = 62; // >= public static final int OP_NEQ = 61; // ~= public static final int OP_AND = 60; // and public static final int OP_OR = 59; // or /*=========================================================================== Notes: (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1, and can be 0: OP_CALL then sets `top' to last_result+1, so next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. (*) In OP_VARARG, if (B == 0) then use actual number of varargs and set top (like in OP_CALL with C == 0). (*) In OP_RETURN, if (B == 0) then return up to `top' (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next `instruction' is real C (*) For comparisons, A specifies what condition the test should accept (true or false). (*) All `skips' (pc++) assume that next instruction is a jump ===========================================================================*/ /* ** masks for instruction properties. The format is: ** bits 0-1: op mode ** bits 2-3: C arg mode ** bits 4-5: B arg mode ** bit 6: instruction set register A ** bit 7: operator is a test */ public static final int OpArgN = 0; /* argument is not used */ public static final int OpArgU = 1; /* argument is used */ public static final int OpArgR = 2; /* argument is a register or a jump offset */ public static final int OpArgK = 3; /* argument is a constant or register/constant */ public static final int[] luaP_opmodes = { /* T A B C mode opcode */ (0<<7) | (1<<6) | (OpArgR<<4) | (OpArgN<<2) | (iABC), /* OP_MOVE */ (0<<7) | (1<<6) | (OpArgK<<4) | (OpArgN<<2) | (iABx), /* OP_LOADK */ (0<<7) | (1<<6) | (OpArgN<<4) | (OpArgN<<2) | (iABx), /* OP_LOADKX */ (0<<7) | (1<<6) | (OpArgU<<4) | (OpArgU<<2) | (iABC), /* OP_LOADBOOL */ (0<<7) | (1<<6) | (OpArgU<<4) | (OpArgN<<2) | (iABC), /* OP_LOADNIL */ (0<<7) | (1<<6) | (OpArgU<<4) | (OpArgN<<2) | (iABC), /* OP_GETUPVAL */ (0<<7) | (1<<6) | (OpArgU<<4) | (OpArgK<<2) | (iABC), /* OP_GETTABUP */ (0<<7) | (1<<6) | (OpArgR<<4) | (OpArgK<<2) | (iABC), /* OP_GETTABLE */ (0<<7) | (0<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_SETTABUP */ (0<<7) | (0<<6) | (OpArgU<<4) | (OpArgN<<2) | (iABC), /* OP_SETUPVAL */ (0<<7) | (0<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_SETTABLE */ (0<<7) | (1<<6) | (OpArgU<<4) | (OpArgU<<2) | (iABC), /* OP_NEWTABLE */ (0<<7) | (1<<6) | (OpArgR<<4) | (OpArgK<<2) | (iABC), /* OP_SELF */ (0<<7) | (1<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_ADD */ (0<<7) | (1<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_SUB */ (0<<7) | (1<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_MUL */ (0<<7) | (1<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_DIV */ (0<<7) | (1<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_MOD */ (0<<7) | (1<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_POW */ (0<<7) | (1<<6) | (OpArgR<<4) | (OpArgN<<2) | (iABC), /* OP_UNM */ (0<<7) | (1<<6) | (OpArgR<<4) | (OpArgN<<2) | (iABC), /* OP_NOT */ (0<<7) | (1<<6) | (OpArgR<<4) | (OpArgN<<2) | (iABC), /* OP_LEN */ (0<<7) | (1<<6) | (OpArgR<<4) | (OpArgR<<2) | (iABC), /* OP_CONCAT */ (0<<7) | (0<<6) | (OpArgR<<4) | (OpArgN<<2) | (iAsBx), /* OP_JMP */ (1<<7) | (0<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_EQ */ (1<<7) | (0<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_LT */ (1<<7) | (0<<6) | (OpArgK<<4) | (OpArgK<<2) | (iABC), /* OP_LE */ (1<<7) | (0<<6) | (OpArgN<<4) | (OpArgU<<2) | (iABC), /* OP_TEST */ (1<<7) | (1<<6) | (OpArgR<<4) | (OpArgU<<2) | (iABC), /* OP_TESTSET */ (0<<7) | (1<<6) | (OpArgU<<4) | (OpArgU<<2) | (iABC), /* OP_CALL */ (0<<7) | (1<<6) | (OpArgU<<4) | (OpArgU<<2) | (iABC), /* OP_TAILCALL */ (0<<7) | (0<<6) | (OpArgU<<4) | (OpArgN<<2) | (iABC), /* OP_RETURN */ (0<<7) | (1<<6) | (OpArgR<<4) | (OpArgN<<2) | (iAsBx), /* OP_FORLOOP */ (0<<7) | (1<<6) | (OpArgR<<4) | (OpArgN<<2) | (iAsBx), /* OP_FORPREP */ (0<<7) | (0<<6) | (OpArgN<<4) | (OpArgU<<2) | (iABC), /* OP_TFORCALL */ (1<<7) | (1<<6) | (OpArgR<<4) | (OpArgN<<2) | (iAsBx), /* OP_TFORLOOP */ (0<<7) | (0<<6) | (OpArgU<<4) | (OpArgU<<2) | (iABC), /* OP_SETLIST */ (0<<7) | (1<<6) | (OpArgU<<4) | (OpArgN<<2) | (iABx), /* OP_CLOSURE */ (0<<7) | (1<<6) | (OpArgU<<4) | (OpArgN<<2) | (iABC), /* OP_VARARG */ (0<<7) | (0<<6) | (OpArgU<<4) | (OpArgU<<2) | (iAx), /* OP_EXTRAARG */ }; public static int getOpMode(int m) { return luaP_opmodes[m] & 3; } public static int getBMode(int m) { return (luaP_opmodes[m] >> 4) & 3; } public static int getCMode(int m) { return (luaP_opmodes[m] >> 2) & 3; } public static boolean testAMode(int m) { return 0 != (luaP_opmodes[m] & (1 << 6)); } public static boolean testTMode(int m) { return 0 != (luaP_opmodes[m] & (1 << 7)); } /* number of list items to accumulate before a SETLIST instruction */ public static final int LFIELDS_PER_FLUSH = 50; private static final int MAXSRC = 80; public static String chunkid( String source ) { if ( source.startsWith("=") ) return source.substring(1); String end = ""; if ( source.startsWith("@") ) { source = source.substring(1); } else { source = "[string \""+source; end = "\"]"; } int n = source.length() + end.length(); if ( n > MAXSRC ) // source = source.substring(0,MAXSRC-end.length()-3) + "..."; source = "..." + source.substring(end.length() - MAXSRC,end.length());//modified by song return source + end; } }