/** * Copyright (c) 2014, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. */ package com.facebook.csslayout; import static com.facebook.csslayout.CSSLayout.DIMENSION_HEIGHT; import static com.facebook.csslayout.CSSLayout.DIMENSION_WIDTH; import static com.facebook.csslayout.CSSLayout.POSITION_BOTTOM; import static com.facebook.csslayout.CSSLayout.POSITION_LEFT; import static com.facebook.csslayout.CSSLayout.POSITION_RIGHT; import static com.facebook.csslayout.CSSLayout.POSITION_TOP; /** * Calculates layouts based on CSS style. See {@link #layoutNode(CSSNode, float, float)}. */ public class LayoutEngine { private static final int CSS_FLEX_DIRECTION_COLUMN = CSSFlexDirection.COLUMN.ordinal(); private static final int CSS_FLEX_DIRECTION_COLUMN_REVERSE = CSSFlexDirection.COLUMN_REVERSE.ordinal(); private static final int CSS_FLEX_DIRECTION_ROW = CSSFlexDirection.ROW.ordinal(); private static final int CSS_FLEX_DIRECTION_ROW_REVERSE = CSSFlexDirection.ROW_REVERSE.ordinal(); private static final int CSS_POSITION_RELATIVE = CSSPositionType.RELATIVE.ordinal(); private static final int CSS_POSITION_ABSOLUTE = CSSPositionType.ABSOLUTE.ordinal(); private static final int[] leading = { POSITION_TOP, POSITION_BOTTOM, POSITION_LEFT, POSITION_RIGHT, }; private static final int[] trailing = { POSITION_BOTTOM, POSITION_TOP, POSITION_RIGHT, POSITION_LEFT, }; private static final int[] pos = { POSITION_TOP, POSITION_BOTTOM, POSITION_LEFT, POSITION_RIGHT, }; private static final int[] dim = { DIMENSION_HEIGHT, DIMENSION_HEIGHT, DIMENSION_WIDTH, DIMENSION_WIDTH, }; private static final int[] leadingSpacing = { Spacing.TOP, Spacing.BOTTOM, Spacing.START, Spacing.START }; private static final int[] trailingSpacing = { Spacing.BOTTOM, Spacing.TOP, Spacing.END, Spacing.END }; private static float boundAxis(CSSNode node, int axis, float value) { float min = CSSConstants.UNDEFINED; float max = CSSConstants.UNDEFINED; if (axis == CSS_FLEX_DIRECTION_COLUMN || axis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) { min = node.style.minHeight; max = node.style.maxHeight; } else if (axis == CSS_FLEX_DIRECTION_ROW || axis == CSS_FLEX_DIRECTION_ROW_REVERSE) { min = node.style.minWidth; max = node.style.maxWidth; } float boundValue = value; if (!Float.isNaN(max) && max >= 0.0 && boundValue > max) { boundValue = max; } if (!Float.isNaN(min) && min >= 0.0 && boundValue < min) { boundValue = min; } return boundValue; } private static void setDimensionFromStyle(CSSNode node, int axis) { // The parent already computed us a width or height. We just skip it if (!Float.isNaN(node.layout.dimensions[dim[axis]])) { return; } // We only run if there's a width or height defined if (Float.isNaN(node.style.dimensions[dim[axis]]) || node.style.dimensions[dim[axis]] <= 0.0) { return; } // The dimensions can never be smaller than the padding and border float maxLayoutDimension = Math.max( boundAxis(node, axis, node.style.dimensions[dim[axis]]), node.style.padding.getWithFallback(leadingSpacing[axis], leading[axis]) + node.style.padding.getWithFallback(trailingSpacing[axis], trailing[axis]) + node.style.border.getWithFallback(leadingSpacing[axis], leading[axis]) + node.style.border.getWithFallback(trailingSpacing[axis], trailing[axis])); node.layout.dimensions[dim[axis]] = maxLayoutDimension; } private static float getRelativePosition(CSSNode node, int axis) { float lead = node.style.position[leading[axis]]; if (!Float.isNaN(lead)) { return lead; } float trailingPos = node.style.position[trailing[axis]]; return Float.isNaN(trailingPos) ? 0 : -trailingPos; } private static int resolveAxis( int axis, CSSDirection direction) { if (direction == CSSDirection.RTL) { if (axis == CSS_FLEX_DIRECTION_ROW) { return CSS_FLEX_DIRECTION_ROW_REVERSE; } else if (axis == CSS_FLEX_DIRECTION_ROW_REVERSE) { return CSS_FLEX_DIRECTION_ROW; } } return axis; } private static CSSDirection resolveDirection(CSSNode node, CSSDirection parentDirection) { CSSDirection direction = node.style.direction; if (direction == CSSDirection.INHERIT) { direction = (parentDirection == null ? CSSDirection.LTR : parentDirection); } return direction; } private static int getFlexDirection(CSSNode node) { return node.style.flexDirection.ordinal(); } private static int getCrossFlexDirection( int axis, CSSDirection direction) { if (axis == CSS_FLEX_DIRECTION_COLUMN || axis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) { return resolveAxis(CSS_FLEX_DIRECTION_ROW, direction); } else { return CSS_FLEX_DIRECTION_COLUMN; } } private static CSSAlign getAlignItem(CSSNode node, CSSNode child) { if (child.style.alignSelf != CSSAlign.AUTO) { return child.style.alignSelf; } return node.style.alignItems; } private static boolean isMeasureDefined(CSSNode node) { return node.isMeasureDefined(); } static boolean needsRelayout(CSSNode node, float parentMaxWidth, float parentMaxHeight) { return node.isDirty() || !FloatUtil.floatsEqual( node.lastLayout.requestedHeight, node.layout.dimensions[DIMENSION_HEIGHT]) || !FloatUtil.floatsEqual( node.lastLayout.requestedWidth, node.layout.dimensions[DIMENSION_WIDTH]) || !FloatUtil.floatsEqual(node.lastLayout.parentMaxWidth, parentMaxWidth) || !FloatUtil.floatsEqual(node.lastLayout.parentMaxHeight, parentMaxHeight); } /*package*/ static void layoutNode( CSSLayoutContext layoutContext, CSSNode node, float parentMaxWidth, float parentMaxHeight, CSSDirection parentDirection) { if (needsRelayout(node, parentMaxWidth, parentMaxHeight)) { node.lastLayout.requestedWidth = node.layout.dimensions[DIMENSION_WIDTH]; node.lastLayout.requestedHeight = node.layout.dimensions[DIMENSION_HEIGHT]; node.lastLayout.parentMaxWidth = parentMaxWidth; node.lastLayout.parentMaxHeight = parentMaxHeight; layoutNodeImpl(layoutContext, node, parentMaxWidth, parentMaxHeight, parentDirection); node.lastLayout.copy(node.layout); } else { node.layout.copy(node.lastLayout); } node.markHasNewLayout(); } private static void layoutNodeImpl( CSSLayoutContext layoutContext, CSSNode node, float parentMaxWidth, float parentMaxHeight, CSSDirection parentDirection) { for (int i = 0, childCount = node.getChildCount(); i < childCount; i++) { node.getChildAt(i).layout.resetResult(); } /** START_GENERATED **/ CSSDirection direction = resolveDirection(node, parentDirection); int mainAxis = resolveAxis(getFlexDirection(node), direction); int crossAxis = getCrossFlexDirection(mainAxis, direction); int resolvedRowAxis = resolveAxis(CSS_FLEX_DIRECTION_ROW, direction); // Handle width and height style attributes setDimensionFromStyle(node, mainAxis); setDimensionFromStyle(node, crossAxis); // Set the resolved resolution in the node's layout node.layout.direction = direction; // The position is set by the parent, but we need to complete it with a // delta composed of the margin and left/top/right/bottom node.layout.position[leading[mainAxis]] += node.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + getRelativePosition(node, mainAxis); node.layout.position[trailing[mainAxis]] += node.style.margin.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + getRelativePosition(node, mainAxis); node.layout.position[leading[crossAxis]] += node.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + getRelativePosition(node, crossAxis); node.layout.position[trailing[crossAxis]] += node.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]) + getRelativePosition(node, crossAxis); // Inline immutable values from the target node to avoid excessive method // invocations during the layout calculation. int childCount = node.getChildCount(); float paddingAndBorderAxisResolvedRow = ((node.style.padding.getWithFallback(leadingSpacing[resolvedRowAxis], leading[resolvedRowAxis]) + node.style.border.getWithFallback(leadingSpacing[resolvedRowAxis], leading[resolvedRowAxis])) + (node.style.padding.getWithFallback(trailingSpacing[resolvedRowAxis], trailing[resolvedRowAxis]) + node.style.border.getWithFallback(trailingSpacing[resolvedRowAxis], trailing[resolvedRowAxis]))); float paddingAndBorderAxisColumn = ((node.style.padding.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + node.style.border.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN])) + (node.style.padding.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]) + node.style.border.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]))); if (isMeasureDefined(node)) { boolean isResolvedRowDimDefined = (!Float.isNaN(node.layout.dimensions[dim[resolvedRowAxis]]) && node.layout.dimensions[dim[resolvedRowAxis]] >= 0.0); float width = CSSConstants.UNDEFINED; if ((!Float.isNaN(node.style.dimensions[dim[resolvedRowAxis]]) && node.style.dimensions[dim[resolvedRowAxis]] >= 0.0)) { width = node.style.dimensions[DIMENSION_WIDTH]; } else if (isResolvedRowDimDefined) { width = node.layout.dimensions[dim[resolvedRowAxis]]; } else { width = parentMaxWidth - (node.style.margin.getWithFallback(leadingSpacing[resolvedRowAxis], leading[resolvedRowAxis]) + node.style.margin.getWithFallback(trailingSpacing[resolvedRowAxis], trailing[resolvedRowAxis])); } width -= paddingAndBorderAxisResolvedRow; float height = CSSConstants.UNDEFINED; if ((!Float.isNaN(node.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]) && node.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0)) { height = node.style.dimensions[DIMENSION_HEIGHT]; } else if ((!Float.isNaN(node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]) && node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0)) { height = node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]; } else { height = parentMaxHeight - (node.style.margin.getWithFallback(leadingSpacing[resolvedRowAxis], leading[resolvedRowAxis]) + node.style.margin.getWithFallback(trailingSpacing[resolvedRowAxis], trailing[resolvedRowAxis])); } height -= ((node.style.padding.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + node.style.border.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN])) + (node.style.padding.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]) + node.style.border.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]))); // We only need to give a dimension for the text if we haven't got any // for it computed yet. It can either be from the style attribute or because // the element is flexible. boolean isRowUndefined = !(!Float.isNaN(node.style.dimensions[dim[resolvedRowAxis]]) && node.style.dimensions[dim[resolvedRowAxis]] >= 0.0) && !isResolvedRowDimDefined; boolean isColumnUndefined = !(!Float.isNaN(node.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]) && node.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0) && Float.isNaN(node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]); // Let's not measure the text if we already know both dimensions if (isRowUndefined || isColumnUndefined) { MeasureOutput measureDim = node.measure( layoutContext.measureOutput, width, height ); if (isRowUndefined) { node.layout.dimensions[DIMENSION_WIDTH] = measureDim.width + paddingAndBorderAxisResolvedRow; } if (isColumnUndefined) { node.layout.dimensions[DIMENSION_HEIGHT] = measureDim.height + paddingAndBorderAxisColumn; } } if (childCount == 0) { return; } } boolean isNodeFlexWrap = (node.style.flexWrap == CSSWrap.WRAP); CSSJustify justifyContent = node.style.justifyContent; float leadingPaddingAndBorderMain = (node.style.padding.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + node.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])); float leadingPaddingAndBorderCross = (node.style.padding.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + node.style.border.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis])); float paddingAndBorderAxisMain = ((node.style.padding.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + node.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])) + (node.style.padding.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + node.style.border.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]))); float paddingAndBorderAxisCross = ((node.style.padding.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + node.style.border.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis])) + (node.style.padding.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]) + node.style.border.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]))); boolean isMainDimDefined = (!Float.isNaN(node.layout.dimensions[dim[mainAxis]]) && node.layout.dimensions[dim[mainAxis]] >= 0.0); boolean isCrossDimDefined = (!Float.isNaN(node.layout.dimensions[dim[crossAxis]]) && node.layout.dimensions[dim[crossAxis]] >= 0.0); boolean isMainRowDirection = (mainAxis == CSS_FLEX_DIRECTION_ROW || mainAxis == CSS_FLEX_DIRECTION_ROW_REVERSE); int i; int ii; CSSNode child; int axis; CSSNode firstAbsoluteChild = null; CSSNode currentAbsoluteChild = null; float definedMainDim = CSSConstants.UNDEFINED; if (isMainDimDefined) { definedMainDim = node.layout.dimensions[dim[mainAxis]] - paddingAndBorderAxisMain; } // We want to execute the next two loops one per line with flex-wrap int startLine = 0; int endLine = 0; // int nextOffset = 0; int alreadyComputedNextLayout = 0; // We aggregate the total dimensions of the container in those two variables float linesCrossDim = 0; float linesMainDim = 0; int linesCount = 0; while (endLine < childCount) { // <Loop A> Layout non flexible children and count children by type // mainContentDim is accumulation of the dimensions and margin of all the // non flexible children. This will be used in order to either set the // dimensions of the node if none already exist, or to compute the // remaining space left for the flexible children. float mainContentDim = 0; // There are three kind of children, non flexible, flexible and absolute. // We need to know how many there are in order to distribute the space. int flexibleChildrenCount = 0; float totalFlexible = 0; int nonFlexibleChildrenCount = 0; // Use the line loop to position children in the main axis for as long // as they are using a simple stacking behaviour. Children that are // immediately stacked in the initial loop will not be touched again // in <Loop C>. boolean isSimpleStackMain = (isMainDimDefined && justifyContent == CSSJustify.FLEX_START) || (!isMainDimDefined && justifyContent != CSSJustify.CENTER); int firstComplexMain = (isSimpleStackMain ? childCount : startLine); // Use the initial line loop to position children in the cross axis for // as long as they are relatively positioned with alignment STRETCH or // FLEX_START. Children that are immediately stacked in the initial loop // will not be touched again in <Loop D>. boolean isSimpleStackCross = true; int firstComplexCross = childCount; CSSNode firstFlexChild = null; CSSNode currentFlexChild = null; float mainDim = leadingPaddingAndBorderMain; float crossDim = 0; float maxWidth; float maxHeight; for (i = startLine; i < childCount; ++i) { child = node.getChildAt(i); child.lineIndex = linesCount; child.nextAbsoluteChild = null; child.nextFlexChild = null; CSSAlign alignItem = getAlignItem(node, child); // Pre-fill cross axis dimensions when the child is using stretch before // we call the recursive layout pass if (alignItem == CSSAlign.STRETCH && child.style.positionType == CSSPositionType.RELATIVE && isCrossDimDefined && !(!Float.isNaN(child.style.dimensions[dim[crossAxis]]) && child.style.dimensions[dim[crossAxis]] >= 0.0)) { child.layout.dimensions[dim[crossAxis]] = Math.max( boundAxis(child, crossAxis, node.layout.dimensions[dim[crossAxis]] - paddingAndBorderAxisCross - (child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]))), // You never want to go smaller than padding ((child.style.padding.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.border.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis])) + (child.style.padding.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]) + child.style.border.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]))) ); } else if (child.style.positionType == CSSPositionType.ABSOLUTE) { // Store a private linked list of absolutely positioned children // so that we can efficiently traverse them later. if (firstAbsoluteChild == null) { firstAbsoluteChild = child; } if (currentAbsoluteChild != null) { currentAbsoluteChild.nextAbsoluteChild = child; } currentAbsoluteChild = child; // Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both // left and right or top and bottom). for (ii = 0; ii < 2; ii++) { axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN; if ((!Float.isNaN(node.layout.dimensions[dim[axis]]) && node.layout.dimensions[dim[axis]] >= 0.0) && !(!Float.isNaN(child.style.dimensions[dim[axis]]) && child.style.dimensions[dim[axis]] >= 0.0) && !Float.isNaN(child.style.position[leading[axis]]) && !Float.isNaN(child.style.position[trailing[axis]])) { child.layout.dimensions[dim[axis]] = Math.max( boundAxis(child, axis, node.layout.dimensions[dim[axis]] - ((node.style.padding.getWithFallback(leadingSpacing[axis], leading[axis]) + node.style.border.getWithFallback(leadingSpacing[axis], leading[axis])) + (node.style.padding.getWithFallback(trailingSpacing[axis], trailing[axis]) + node.style.border.getWithFallback(trailingSpacing[axis], trailing[axis]))) - (child.style.margin.getWithFallback(leadingSpacing[axis], leading[axis]) + child.style.margin.getWithFallback(trailingSpacing[axis], trailing[axis])) - (Float.isNaN(child.style.position[leading[axis]]) ? 0 : child.style.position[leading[axis]]) - (Float.isNaN(child.style.position[trailing[axis]]) ? 0 : child.style.position[trailing[axis]])), // You never want to go smaller than padding ((child.style.padding.getWithFallback(leadingSpacing[axis], leading[axis]) + child.style.border.getWithFallback(leadingSpacing[axis], leading[axis])) + (child.style.padding.getWithFallback(trailingSpacing[axis], trailing[axis]) + child.style.border.getWithFallback(trailingSpacing[axis], trailing[axis]))) ); } } } float nextContentDim = 0; // It only makes sense to consider a child flexible if we have a computed // dimension for the node. if (isMainDimDefined && (child.style.positionType == CSSPositionType.RELATIVE && child.style.flex > 0)) { flexibleChildrenCount++; totalFlexible += child.style.flex; // Store a private linked list of flexible children so that we can // efficiently traverse them later. if (firstFlexChild == null) { firstFlexChild = child; } if (currentFlexChild != null) { currentFlexChild.nextFlexChild = child; } currentFlexChild = child; // Even if we don't know its exact size yet, we already know the padding, // border and margin. We'll use this partial information, which represents // the smallest possible size for the child, to compute the remaining // available space. nextContentDim = ((child.style.padding.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])) + (child.style.padding.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + child.style.border.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]))) + (child.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.margin.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis])); } else { maxWidth = CSSConstants.UNDEFINED; maxHeight = CSSConstants.UNDEFINED; if (!isMainRowDirection) { if ((!Float.isNaN(node.layout.dimensions[dim[resolvedRowAxis]]) && node.layout.dimensions[dim[resolvedRowAxis]] >= 0.0)) { maxWidth = node.layout.dimensions[dim[resolvedRowAxis]] - paddingAndBorderAxisResolvedRow; } else { maxWidth = parentMaxWidth - (node.style.margin.getWithFallback(leadingSpacing[resolvedRowAxis], leading[resolvedRowAxis]) + node.style.margin.getWithFallback(trailingSpacing[resolvedRowAxis], trailing[resolvedRowAxis])) - paddingAndBorderAxisResolvedRow; } } else { if ((!Float.isNaN(node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]) && node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0)) { maxHeight = node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] - paddingAndBorderAxisColumn; } else { maxHeight = parentMaxHeight - (node.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + node.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN])) - paddingAndBorderAxisColumn; } } // This is the main recursive call. We layout non flexible children. if (alreadyComputedNextLayout == 0) { layoutNode(layoutContext, child, maxWidth, maxHeight, direction); } // Absolute positioned elements do not take part of the layout, so we // don't use them to compute mainContentDim if (child.style.positionType == CSSPositionType.RELATIVE) { nonFlexibleChildrenCount++; // At this point we know the final size and margin of the element. nextContentDim = (child.layout.dimensions[dim[mainAxis]] + child.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.margin.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis])); } } // The element we are about to add would make us go to the next line if (isNodeFlexWrap && isMainDimDefined && mainContentDim + nextContentDim > definedMainDim && // If there's only one element, then it's bigger than the content // and needs its own line i != startLine) { nonFlexibleChildrenCount--; alreadyComputedNextLayout = 1; break; } // Disable simple stacking in the main axis for the current line as // we found a non-trivial child. The remaining children will be laid out // in <Loop C>. if (isSimpleStackMain && (child.style.positionType != CSSPositionType.RELATIVE || (child.style.positionType == CSSPositionType.RELATIVE && child.style.flex > 0))) { isSimpleStackMain = false; firstComplexMain = i; } // Disable simple stacking in the cross axis for the current line as // we found a non-trivial child. The remaining children will be laid out // in <Loop D>. if (isSimpleStackCross && (child.style.positionType != CSSPositionType.RELATIVE || (alignItem != CSSAlign.STRETCH && alignItem != CSSAlign.FLEX_START) || !(!Float.isNaN(child.layout.dimensions[dim[crossAxis]]) && child.layout.dimensions[dim[crossAxis]] >= 0.0))) { isSimpleStackCross = false; firstComplexCross = i; } if (isSimpleStackMain) { child.layout.position[pos[mainAxis]] += mainDim; if (isMainDimDefined) { child.layout.position[trailing[mainAxis]] = node.layout.dimensions[dim[mainAxis]] - child.layout.dimensions[dim[mainAxis]] - child.layout.position[pos[mainAxis]]; } mainDim += (child.layout.dimensions[dim[mainAxis]] + child.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.margin.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis])); crossDim = Math.max(crossDim, boundAxis(child, crossAxis, (child.layout.dimensions[dim[crossAxis]] + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis])))); } if (isSimpleStackCross) { child.layout.position[pos[crossAxis]] += linesCrossDim + leadingPaddingAndBorderCross; if (isCrossDimDefined) { child.layout.position[trailing[crossAxis]] = node.layout.dimensions[dim[crossAxis]] - child.layout.dimensions[dim[crossAxis]] - child.layout.position[pos[crossAxis]]; } } alreadyComputedNextLayout = 0; mainContentDim += nextContentDim; endLine = i + 1; } // <Loop B> Layout flexible children and allocate empty space // In order to position the elements in the main axis, we have two // controls. The space between the beginning and the first element // and the space between each two elements. float leadingMainDim = 0; float betweenMainDim = 0; // The remaining available space that needs to be allocated float remainingMainDim = 0; if (isMainDimDefined) { remainingMainDim = definedMainDim - mainContentDim; } else { remainingMainDim = Math.max(mainContentDim, 0) - mainContentDim; } // If there are flexible children in the mix, they are going to fill the // remaining space if (flexibleChildrenCount != 0) { float flexibleMainDim = remainingMainDim / totalFlexible; float baseMainDim; float boundMainDim; // If the flex share of remaining space doesn't meet min/max bounds, // remove this child from flex calculations. currentFlexChild = firstFlexChild; while (currentFlexChild != null) { baseMainDim = flexibleMainDim * currentFlexChild.style.flex + ((currentFlexChild.style.padding.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + currentFlexChild.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])) + (currentFlexChild.style.padding.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + currentFlexChild.style.border.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]))); boundMainDim = boundAxis(currentFlexChild, mainAxis, baseMainDim); if (baseMainDim != boundMainDim) { remainingMainDim -= boundMainDim; totalFlexible -= currentFlexChild.style.flex; } currentFlexChild = currentFlexChild.nextFlexChild; } flexibleMainDim = remainingMainDim / totalFlexible; // The non flexible children can overflow the container, in this case // we should just assume that there is no space available. if (flexibleMainDim < 0) { flexibleMainDim = 0; } currentFlexChild = firstFlexChild; while (currentFlexChild != null) { // At this point we know the final size of the element in the main // dimension currentFlexChild.layout.dimensions[dim[mainAxis]] = boundAxis(currentFlexChild, mainAxis, flexibleMainDim * currentFlexChild.style.flex + ((currentFlexChild.style.padding.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + currentFlexChild.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])) + (currentFlexChild.style.padding.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + currentFlexChild.style.border.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]))) ); maxWidth = CSSConstants.UNDEFINED; if ((!Float.isNaN(node.layout.dimensions[dim[resolvedRowAxis]]) && node.layout.dimensions[dim[resolvedRowAxis]] >= 0.0)) { maxWidth = node.layout.dimensions[dim[resolvedRowAxis]] - paddingAndBorderAxisResolvedRow; } else if (!isMainRowDirection) { maxWidth = parentMaxWidth - (node.style.margin.getWithFallback(leadingSpacing[resolvedRowAxis], leading[resolvedRowAxis]) + node.style.margin.getWithFallback(trailingSpacing[resolvedRowAxis], trailing[resolvedRowAxis])) - paddingAndBorderAxisResolvedRow; } maxHeight = CSSConstants.UNDEFINED; if ((!Float.isNaN(node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]) && node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0)) { maxHeight = node.layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] - paddingAndBorderAxisColumn; } else if (isMainRowDirection) { maxHeight = parentMaxHeight - (node.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + node.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN])) - paddingAndBorderAxisColumn; } // And we recursively call the layout algorithm for this child layoutNode(layoutContext, currentFlexChild, maxWidth, maxHeight, direction); child = currentFlexChild; currentFlexChild = currentFlexChild.nextFlexChild; child.nextFlexChild = null; } // We use justifyContent to figure out how to allocate the remaining // space available } else if (justifyContent != CSSJustify.FLEX_START) { if (justifyContent == CSSJustify.CENTER) { leadingMainDim = remainingMainDim / 2; } else if (justifyContent == CSSJustify.FLEX_END) { leadingMainDim = remainingMainDim; } else if (justifyContent == CSSJustify.SPACE_BETWEEN) { remainingMainDim = Math.max(remainingMainDim, 0); if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 != 0) { betweenMainDim = remainingMainDim / (flexibleChildrenCount + nonFlexibleChildrenCount - 1); } else { betweenMainDim = 0; } } else if (justifyContent == CSSJustify.SPACE_AROUND) { // Space on the edges is half of the space between elements betweenMainDim = remainingMainDim / (flexibleChildrenCount + nonFlexibleChildrenCount); leadingMainDim = betweenMainDim / 2; } } // <Loop C> Position elements in the main axis and compute dimensions // At this point, all the children have their dimensions set. We need to // find their position. In order to do that, we accumulate data in // variables that are also useful to compute the total dimensions of the // container! mainDim += leadingMainDim; for (i = firstComplexMain; i < endLine; ++i) { child = node.getChildAt(i); if (child.style.positionType == CSSPositionType.ABSOLUTE && !Float.isNaN(child.style.position[leading[mainAxis]])) { // In case the child is position absolute and has left/top being // defined, we override the position to whatever the user said // (and margin/border). child.layout.position[pos[mainAxis]] = (Float.isNaN(child.style.position[leading[mainAxis]]) ? 0 : child.style.position[leading[mainAxis]]) + node.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]); } else { // If the child is position absolute (without top/left) or relative, // we put it at the current accumulated offset. child.layout.position[pos[mainAxis]] += mainDim; // Define the trailing position accordingly. if (isMainDimDefined) { child.layout.position[trailing[mainAxis]] = node.layout.dimensions[dim[mainAxis]] - child.layout.dimensions[dim[mainAxis]] - child.layout.position[pos[mainAxis]]; } // Now that we placed the element, we need to update the variables // We only need to do that for relative elements. Absolute elements // do not take part in that phase. if (child.style.positionType == CSSPositionType.RELATIVE) { // The main dimension is the sum of all the elements dimension plus // the spacing. mainDim += betweenMainDim + (child.layout.dimensions[dim[mainAxis]] + child.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.margin.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis])); // The cross dimension is the max of the elements dimension since there // can only be one element in that cross dimension. crossDim = Math.max(crossDim, boundAxis(child, crossAxis, (child.layout.dimensions[dim[crossAxis]] + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis])))); } } } float containerCrossAxis = node.layout.dimensions[dim[crossAxis]]; if (!isCrossDimDefined) { containerCrossAxis = Math.max( // For the cross dim, we add both sides at the end because the value // is aggregate via a max function. Intermediate negative values // can mess this computation otherwise boundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross), paddingAndBorderAxisCross ); } // <Loop D> Position elements in the cross axis for (i = firstComplexCross; i < endLine; ++i) { child = node.getChildAt(i); if (child.style.positionType == CSSPositionType.ABSOLUTE && !Float.isNaN(child.style.position[leading[crossAxis]])) { // In case the child is absolutely positionned and has a // top/left/bottom/right being set, we override all the previously // computed positions to set it correctly. child.layout.position[pos[crossAxis]] = (Float.isNaN(child.style.position[leading[crossAxis]]) ? 0 : child.style.position[leading[crossAxis]]) + node.style.border.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]); } else { float leadingCrossDim = leadingPaddingAndBorderCross; // For a relative children, we're either using alignItems (parent) or // alignSelf (child) in order to determine the position in the cross axis if (child.style.positionType == CSSPositionType.RELATIVE) { /*eslint-disable */ // This variable is intentionally re-defined as the code is transpiled to a block scope language CSSAlign alignItem = getAlignItem(node, child); /*eslint-enable */ if (alignItem == CSSAlign.STRETCH) { // You can only stretch if the dimension has not already been set // previously. if (!(!Float.isNaN(child.layout.dimensions[dim[crossAxis]]) && child.layout.dimensions[dim[crossAxis]] >= 0.0)) { child.layout.dimensions[dim[crossAxis]] = Math.max( boundAxis(child, crossAxis, containerCrossAxis - paddingAndBorderAxisCross - (child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]))), // You never want to go smaller than padding ((child.style.padding.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.border.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis])) + (child.style.padding.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]) + child.style.border.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]))) ); } } else if (alignItem != CSSAlign.FLEX_START) { // The remaining space between the parent dimensions+padding and child // dimensions+margin. float remainingCrossDim = containerCrossAxis - paddingAndBorderAxisCross - (child.layout.dimensions[dim[crossAxis]] + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis])); if (alignItem == CSSAlign.CENTER) { leadingCrossDim += remainingCrossDim / 2; } else { // CSSAlign.FLEX_END leadingCrossDim += remainingCrossDim; } } } // And we apply the position child.layout.position[pos[crossAxis]] += linesCrossDim + leadingCrossDim; // Define the trailing position accordingly. if (isCrossDimDefined) { child.layout.position[trailing[crossAxis]] = node.layout.dimensions[dim[crossAxis]] - child.layout.dimensions[dim[crossAxis]] - child.layout.position[pos[crossAxis]]; } } } linesCrossDim += crossDim; linesMainDim = Math.max(linesMainDim, mainDim); linesCount += 1; startLine = endLine; } // <Loop E> // // Note(prenaux): More than one line, we need to layout the crossAxis // according to alignContent. // // Note that we could probably remove <Loop D> and handle the one line case // here too, but for the moment this is safer since it won't interfere with // previously working code. // // See specs: // http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#layout-algorithm // section 9.4 // if (linesCount > 1 && isCrossDimDefined) { float nodeCrossAxisInnerSize = node.layout.dimensions[dim[crossAxis]] - paddingAndBorderAxisCross; float remainingAlignContentDim = nodeCrossAxisInnerSize - linesCrossDim; float crossDimLead = 0; float currentLead = leadingPaddingAndBorderCross; CSSAlign alignContent = node.style.alignContent; if (alignContent == CSSAlign.FLEX_END) { currentLead += remainingAlignContentDim; } else if (alignContent == CSSAlign.CENTER) { currentLead += remainingAlignContentDim / 2; } else if (alignContent == CSSAlign.STRETCH) { if (nodeCrossAxisInnerSize > linesCrossDim) { crossDimLead = (remainingAlignContentDim / linesCount); } } int endIndex = 0; for (i = 0; i < linesCount; ++i) { int startIndex = endIndex; // compute the line's height and find the endIndex float lineHeight = 0; for (ii = startIndex; ii < childCount; ++ii) { child = node.getChildAt(ii); if (child.style.positionType != CSSPositionType.RELATIVE) { continue; } if (child.lineIndex != i) { break; } if ((!Float.isNaN(child.layout.dimensions[dim[crossAxis]]) && child.layout.dimensions[dim[crossAxis]] >= 0.0)) { lineHeight = Math.max( lineHeight, child.layout.dimensions[dim[crossAxis]] + (child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis])) ); } } endIndex = ii; lineHeight += crossDimLead; for (ii = startIndex; ii < endIndex; ++ii) { child = node.getChildAt(ii); if (child.style.positionType != CSSPositionType.RELATIVE) { continue; } CSSAlign alignContentAlignItem = getAlignItem(node, child); if (alignContentAlignItem == CSSAlign.FLEX_START) { child.layout.position[pos[crossAxis]] = currentLead + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]); } else if (alignContentAlignItem == CSSAlign.FLEX_END) { child.layout.position[pos[crossAxis]] = currentLead + lineHeight - child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]) - child.layout.dimensions[dim[crossAxis]]; } else if (alignContentAlignItem == CSSAlign.CENTER) { float childHeight = child.layout.dimensions[dim[crossAxis]]; child.layout.position[pos[crossAxis]] = currentLead + (lineHeight - childHeight) / 2; } else if (alignContentAlignItem == CSSAlign.STRETCH) { child.layout.position[pos[crossAxis]] = currentLead + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]); // TODO(prenaux): Correctly set the height of items with undefined // (auto) crossAxis dimension. } } currentLead += lineHeight; } } boolean needsMainTrailingPos = false; boolean needsCrossTrailingPos = false; // If the user didn't specify a width or height, and it has not been set // by the container, then we set it via the children. if (!isMainDimDefined) { node.layout.dimensions[dim[mainAxis]] = Math.max( // We're missing the last padding at this point to get the final // dimension boundAxis(node, mainAxis, linesMainDim + (node.style.padding.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + node.style.border.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]))), // We can never assign a width smaller than the padding and borders paddingAndBorderAxisMain ); if (mainAxis == CSS_FLEX_DIRECTION_ROW_REVERSE || mainAxis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) { needsMainTrailingPos = true; } } if (!isCrossDimDefined) { node.layout.dimensions[dim[crossAxis]] = Math.max( // For the cross dim, we add both sides at the end because the value // is aggregate via a max function. Intermediate negative values // can mess this computation otherwise boundAxis(node, crossAxis, linesCrossDim + paddingAndBorderAxisCross), paddingAndBorderAxisCross ); if (crossAxis == CSS_FLEX_DIRECTION_ROW_REVERSE || crossAxis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) { needsCrossTrailingPos = true; } } // <Loop F> Set trailing position if necessary if (needsMainTrailingPos || needsCrossTrailingPos) { for (i = 0; i < childCount; ++i) { child = node.getChildAt(i); if (needsMainTrailingPos) { child.layout.position[trailing[mainAxis]] = node.layout.dimensions[dim[mainAxis]] - child.layout.dimensions[dim[mainAxis]] - child.layout.position[pos[mainAxis]]; } if (needsCrossTrailingPos) { child.layout.position[trailing[crossAxis]] = node.layout.dimensions[dim[crossAxis]] - child.layout.dimensions[dim[crossAxis]] - child.layout.position[pos[crossAxis]]; } } } // <Loop G> Calculate dimensions for absolutely positioned elements currentAbsoluteChild = firstAbsoluteChild; while (currentAbsoluteChild != null) { // Pre-fill dimensions when using absolute position and both offsets for // the axis are defined (either both left and right or top and bottom). for (ii = 0; ii < 2; ii++) { axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN; if ((!Float.isNaN(node.layout.dimensions[dim[axis]]) && node.layout.dimensions[dim[axis]] >= 0.0) && !(!Float.isNaN(currentAbsoluteChild.style.dimensions[dim[axis]]) && currentAbsoluteChild.style.dimensions[dim[axis]] >= 0.0) && !Float.isNaN(currentAbsoluteChild.style.position[leading[axis]]) && !Float.isNaN(currentAbsoluteChild.style.position[trailing[axis]])) { currentAbsoluteChild.layout.dimensions[dim[axis]] = Math.max( boundAxis(currentAbsoluteChild, axis, node.layout.dimensions[dim[axis]] - (node.style.border.getWithFallback(leadingSpacing[axis], leading[axis]) + node.style.border.getWithFallback(trailingSpacing[axis], trailing[axis])) - (currentAbsoluteChild.style.margin.getWithFallback(leadingSpacing[axis], leading[axis]) + currentAbsoluteChild.style.margin.getWithFallback(trailingSpacing[axis], trailing[axis])) - (Float.isNaN(currentAbsoluteChild.style.position[leading[axis]]) ? 0 : currentAbsoluteChild.style.position[leading[axis]]) - (Float.isNaN(currentAbsoluteChild.style.position[trailing[axis]]) ? 0 : currentAbsoluteChild.style.position[trailing[axis]]) ), // You never want to go smaller than padding ((currentAbsoluteChild.style.padding.getWithFallback(leadingSpacing[axis], leading[axis]) + currentAbsoluteChild.style.border.getWithFallback(leadingSpacing[axis], leading[axis])) + (currentAbsoluteChild.style.padding.getWithFallback(trailingSpacing[axis], trailing[axis]) + currentAbsoluteChild.style.border.getWithFallback(trailingSpacing[axis], trailing[axis]))) ); } if (!Float.isNaN(currentAbsoluteChild.style.position[trailing[axis]]) && !!Float.isNaN(currentAbsoluteChild.style.position[leading[axis]])) { currentAbsoluteChild.layout.position[leading[axis]] = node.layout.dimensions[dim[axis]] - currentAbsoluteChild.layout.dimensions[dim[axis]] - (Float.isNaN(currentAbsoluteChild.style.position[trailing[axis]]) ? 0 : currentAbsoluteChild.style.position[trailing[axis]]); } } child = currentAbsoluteChild; currentAbsoluteChild = currentAbsoluteChild.nextAbsoluteChild; child.nextAbsoluteChild = null; } } /** END_GENERATED **/ }