/** * Copyright 2010 The Apache Software Foundation * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.hbase.regionserver; import java.io.IOException; import java.io.InterruptedIOException; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.List; import java.util.NavigableSet; import java.util.SortedSet; import java.util.concurrent.CopyOnWriteArraySet; import java.util.concurrent.locks.ReentrantReadWriteLock; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.FileUtil; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HConstants; import org.apache.hadoop.hbase.HRegionInfo; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.RemoteExceptionHandler; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.io.HeapSize; import org.apache.hadoop.hbase.io.hfile.CacheConfig; import org.apache.hadoop.hbase.io.hfile.Compression; import org.apache.hadoop.hbase.io.hfile.HFile; import org.apache.hadoop.hbase.io.hfile.HFileScanner; import org.apache.hadoop.hbase.io.hfile.InvalidHFileException; import org.apache.hadoop.hbase.monitoring.MonitoredTask; import org.apache.hadoop.hbase.regionserver.compactions.CompactionProgress; import org.apache.hadoop.hbase.regionserver.compactions.CompactionRequest; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.hbase.util.ClassSize; import org.apache.hadoop.hbase.util.CollectionBackedScanner; import org.apache.hadoop.hbase.util.EnvironmentEdgeManager; import org.apache.hadoop.hbase.util.FSUtils; import org.apache.hadoop.util.StringUtils; import com.google.common.base.Preconditions; import com.google.common.collect.ImmutableList; import com.google.common.collect.Lists; /** * A Store holds a column family in a Region. Its a memstore and a set of zero * or more StoreFiles, which stretch backwards over time. * * <p>There's no reason to consider append-logging at this level; all logging * and locking is handled at the HRegion level. Store just provides * services to manage sets of StoreFiles. One of the most important of those * services is compaction services where files are aggregated once they pass * a configurable threshold. * * <p>The only thing having to do with logs that Store needs to deal with is * the reconstructionLog. This is a segment of an HRegion's log that might * NOT be present upon startup. If the param is NULL, there's nothing to do. * If the param is non-NULL, we need to process the log to reconstruct * a TreeMap that might not have been written to disk before the process * died. * * <p>It's assumed that after this constructor returns, the reconstructionLog * file will be deleted (by whoever has instantiated the Store). * * <p>Locking and transactions are handled at a higher level. This API should * not be called directly but by an HRegion manager. */ public class Store implements HeapSize { static final Log LOG = LogFactory.getLog(Store.class); protected final MemStore memstore; // This stores directory in the filesystem. private final Path homedir; private final HRegion region; private final HColumnDescriptor family; final FileSystem fs; final Configuration conf; final CacheConfig cacheConf; // ttl in milliseconds. protected long ttl; protected int minVersions; protected int maxVersions; long majorCompactionTime; private final int minFilesToCompact; private final int maxFilesToCompact; private final long minCompactSize; private final long maxCompactSize; // compactRatio: double on purpose! Float.MAX < Long.MAX < Double.MAX // With float, java will downcast your long to float for comparisons (bad) private double compactRatio; private long lastCompactSize = 0; volatile boolean forceMajor = false; /* how many bytes to write between status checks */ static int closeCheckInterval = 0; private final int blockingStoreFileCount; private volatile long storeSize = 0L; private volatile long totalUncompressedBytes = 0L; private final Object flushLock = new Object(); final ReentrantReadWriteLock lock = new ReentrantReadWriteLock(); private final String storeNameStr; private CompactionProgress progress; private final int compactionKVMax; private final boolean verifyBulkLoads; /* * List of store files inside this store. This is an immutable list that * is atomically replaced when its contents change. */ private ImmutableList<StoreFile> storefiles = null; List<StoreFile> filesCompacting = Lists.newArrayList(); // All access must be synchronized. private final CopyOnWriteArraySet<ChangedReadersObserver> changedReaderObservers = new CopyOnWriteArraySet<ChangedReadersObserver>(); private final int blocksize; /** Compression algorithm for flush files and minor compaction */ private final Compression.Algorithm compression; /** Compression algorithm for major compaction */ private final Compression.Algorithm compactionCompression; // Comparing KeyValues final KeyValue.KVComparator comparator; /** * Constructor * @param basedir qualified path under which the region directory lives; * generally the table subdirectory * @param region * @param family HColumnDescriptor for this column * @param fs file system object * @param conf configuration object * failed. Can be null. * @throws IOException */ protected Store(Path basedir, HRegion region, HColumnDescriptor family, FileSystem fs, Configuration conf) throws IOException { HRegionInfo info = region.regionInfo; this.fs = fs; this.homedir = getStoreHomedir(basedir, info.getEncodedName(), family.getName()); if (!this.fs.exists(this.homedir)) { if (!this.fs.mkdirs(this.homedir)) throw new IOException("Failed create of: " + this.homedir.toString()); } this.region = region; this.family = family; this.conf = conf; this.blocksize = family.getBlocksize(); this.compression = family.getCompression(); // avoid overriding compression setting for major compactions if the user // has not specified it separately this.compactionCompression = (family.getCompactionCompression() != Compression.Algorithm.NONE) ? family.getCompactionCompression() : this.compression; this.comparator = info.getComparator(); // getTimeToLive returns ttl in seconds. Convert to milliseconds. this.ttl = family.getTimeToLive(); if (ttl == HConstants.FOREVER) { // default is unlimited ttl. ttl = Long.MAX_VALUE; } else if (ttl == -1) { ttl = Long.MAX_VALUE; } else { // second -> ms adjust for user data this.ttl *= 1000; } this.minVersions = family.getMinVersions(); this.maxVersions = family.getMaxVersions(); this.memstore = new MemStore(conf, this.comparator); this.storeNameStr = Bytes.toString(this.family.getName()); // By default, compact if storefile.count >= minFilesToCompact this.minFilesToCompact = Math.max(2, conf.getInt("hbase.hstore.compaction.min", /*old name*/ conf.getInt("hbase.hstore.compactionThreshold", 3))); // Setting up cache configuration for this family this.cacheConf = new CacheConfig(conf, family); this.blockingStoreFileCount = conf.getInt("hbase.hstore.blockingStoreFiles", 7); this.majorCompactionTime = getNextMajorCompactTime(); this.maxFilesToCompact = conf.getInt("hbase.hstore.compaction.max", 10); this.minCompactSize = conf.getLong("hbase.hstore.compaction.min.size", this.region.memstoreFlushSize); this.maxCompactSize = conf.getLong("hbase.hstore.compaction.max.size", Long.MAX_VALUE); this.compactRatio = conf.getFloat("hbase.hstore.compaction.ratio", 1.2F); this.compactionKVMax = conf.getInt("hbase.hstore.compaction.kv.max", 10); this.verifyBulkLoads = conf.getBoolean("hbase.hstore.bulkload.verify", false); if (Store.closeCheckInterval == 0) { Store.closeCheckInterval = conf.getInt( "hbase.hstore.close.check.interval", 10*1000*1000 /* 10 MB */); } this.storefiles = sortAndClone(loadStoreFiles()); } public HColumnDescriptor getFamily() { return this.family; } /** * @return The maximum sequence id in all store files. */ long getMaxSequenceId() { return StoreFile.getMaxSequenceIdInList(this.getStorefiles()); } /** * @return The maximum memstoreTS in all store files. */ public long getMaxMemstoreTS() { return StoreFile.getMaxMemstoreTSInList(this.getStorefiles()); } /** * @param tabledir * @param encodedName Encoded region name. * @param family * @return Path to family/Store home directory. */ public static Path getStoreHomedir(final Path tabledir, final String encodedName, final byte [] family) { return new Path(tabledir, new Path(encodedName, new Path(Bytes.toString(family)))); } /** * Return the directory in which this store stores its * StoreFiles */ public Path getHomedir() { return homedir; } /* * Creates an unsorted list of StoreFile loaded from the given directory. * @throws IOException */ private List<StoreFile> loadStoreFiles() throws IOException { ArrayList<StoreFile> results = new ArrayList<StoreFile>(); FileStatus files[] = FSUtils.listStatus(this.fs, this.homedir, null); for (int i = 0; files != null && i < files.length; i++) { // Skip directories. if (files[i].isDir()) { continue; } Path p = files[i].getPath(); // Check for empty file. Should never be the case but can happen // after data loss in hdfs for whatever reason (upgrade, etc.): HBASE-646 if (this.fs.getFileStatus(p).getLen() <= 0) { LOG.warn("Skipping " + p + " because its empty. HBASE-646 DATA LOSS?"); continue; } StoreFile curfile = new StoreFile(fs, p, this.conf, this.cacheConf, this.family.getBloomFilterType()); curfile.createReader(); long length = curfile.getReader().length(); this.storeSize += length; this.totalUncompressedBytes += curfile.getReader().getTotalUncompressedBytes(); if (LOG.isDebugEnabled()) { LOG.debug("loaded " + curfile.toStringDetailed()); } results.add(curfile); } return results; } /** * Adds a value to the memstore * * @param kv * @return memstore size delta */ protected long add(final KeyValue kv) { lock.readLock().lock(); try { return this.memstore.add(kv); } finally { lock.readLock().unlock(); } } /** * Adds a value to the memstore * * @param kv * @return memstore size delta */ protected long delete(final KeyValue kv) { lock.readLock().lock(); try { return this.memstore.delete(kv); } finally { lock.readLock().unlock(); } } /** * @return All store files. */ List<StoreFile> getStorefiles() { return this.storefiles; } /** * This throws a WrongRegionException if the HFile does not fit in this * region, or an InvalidHFileException if the HFile is not valid. */ void assertBulkLoadHFileOk(Path srcPath) throws IOException { HFile.Reader reader = null; try { LOG.info("Validating hfile at " + srcPath + " for inclusion in " + "store " + this + " region " + this.region); reader = HFile.createReader(srcPath.getFileSystem(conf), srcPath, cacheConf); reader.loadFileInfo(); byte[] firstKey = reader.getFirstRowKey(); byte[] lk = reader.getLastKey(); byte[] lastKey = (lk == null) ? null : KeyValue.createKeyValueFromKey(lk).getRow(); LOG.debug("HFile bounds: first=" + Bytes.toStringBinary(firstKey) + " last=" + Bytes.toStringBinary(lastKey)); LOG.debug("Region bounds: first=" + Bytes.toStringBinary(region.getStartKey()) + " last=" + Bytes.toStringBinary(region.getEndKey())); HRegionInfo hri = region.getRegionInfo(); if (!hri.containsRange(firstKey, lastKey)) { throw new WrongRegionException( "Bulk load file " + srcPath.toString() + " does not fit inside region " + this.region); } if (verifyBulkLoads) { KeyValue prevKV = null; HFileScanner scanner = reader.getScanner(false, false, false); scanner.seekTo(); do { KeyValue kv = scanner.getKeyValue(); if (prevKV != null) { if (Bytes.compareTo(prevKV.getBuffer(), prevKV.getRowOffset(), prevKV.getRowLength(), kv.getBuffer(), kv.getRowOffset(), kv.getRowLength()) > 0) { throw new InvalidHFileException("Previous row is greater than" + " current row: path=" + srcPath + " previous=" + Bytes.toStringBinary(prevKV.getKey()) + " current=" + Bytes.toStringBinary(kv.getKey())); } if (Bytes.compareTo(prevKV.getBuffer(), prevKV.getFamilyOffset(), prevKV.getFamilyLength(), kv.getBuffer(), kv.getFamilyOffset(), kv.getFamilyLength()) != 0) { throw new InvalidHFileException("Previous key had different" + " family compared to current key: path=" + srcPath + " previous=" + Bytes.toStringBinary(prevKV.getFamily()) + " current=" + Bytes.toStringBinary(kv.getFamily())); } } prevKV = kv; } while (scanner.next()); } } finally { if (reader != null) reader.close(); } } /** * This method should only be called from HRegion. It is assumed that the * ranges of values in the HFile fit within the stores assigned region. * (assertBulkLoadHFileOk checks this) */ void bulkLoadHFile(String srcPathStr) throws IOException { Path srcPath = new Path(srcPathStr); // Move the file if it's on another filesystem FileSystem srcFs = srcPath.getFileSystem(conf); if (!srcFs.equals(fs)) { LOG.info("File " + srcPath + " on different filesystem than " + "destination store - moving to this filesystem."); Path tmpPath = getTmpPath(); FileUtil.copy(srcFs, srcPath, fs, tmpPath, false, conf); LOG.info("Copied to temporary path on dst filesystem: " + tmpPath); srcPath = tmpPath; } Path dstPath = StoreFile.getRandomFilename(fs, homedir); LOG.debug("Renaming bulk load file " + srcPath + " to " + dstPath); StoreFile.rename(fs, srcPath, dstPath); StoreFile sf = new StoreFile(fs, dstPath, this.conf, this.cacheConf, this.family.getBloomFilterType()); sf.createReader(); LOG.info("Moved hfile " + srcPath + " into store directory " + homedir + " - updating store file list."); // Append the new storefile into the list this.lock.writeLock().lock(); try { ArrayList<StoreFile> newFiles = new ArrayList<StoreFile>(storefiles); newFiles.add(sf); this.storefiles = sortAndClone(newFiles); } finally { // We need the lock, as long as we are updating the storefiles // or changing the memstore. Let us release it before calling // notifyChangeReadersObservers. See HBASE-4485 for a possible // deadlock scenario that could have happened if continue to hold // the lock. this.lock.writeLock().unlock(); } notifyChangedReadersObservers(); LOG.info("Successfully loaded store file " + srcPath + " into store " + this + " (new location: " + dstPath + ")"); } /** * Get a temporary path in this region. These temporary files * will get cleaned up when the region is re-opened if they are * still around. */ private Path getTmpPath() throws IOException { return StoreFile.getRandomFilename( fs, region.getTmpDir()); } /** * Close all the readers * * We don't need to worry about subsequent requests because the HRegion holds * a write lock that will prevent any more reads or writes. * * @throws IOException */ ImmutableList<StoreFile> close() throws IOException { this.lock.writeLock().lock(); try { ImmutableList<StoreFile> result = storefiles; // Clear so metrics doesn't find them. storefiles = ImmutableList.of(); for (StoreFile f: result) { f.closeReader(true); } LOG.debug("closed " + this.storeNameStr); return result; } finally { this.lock.writeLock().unlock(); } } /** * Snapshot this stores memstore. Call before running * {@link #flushCache(long, SortedSet<KeyValue>)} so it has some work to do. */ void snapshot() { this.memstore.snapshot(); } /** * Write out current snapshot. Presumes {@link #snapshot()} has been called * previously. * @param logCacheFlushId flush sequence number * @param snapshot * @param snapshotTimeRangeTracker * @return true if a compaction is needed * @throws IOException */ private StoreFile flushCache(final long logCacheFlushId, SortedSet<KeyValue> snapshot, TimeRangeTracker snapshotTimeRangeTracker, MonitoredTask status) throws IOException { // If an exception happens flushing, we let it out without clearing // the memstore snapshot. The old snapshot will be returned when we say // 'snapshot', the next time flush comes around. return internalFlushCache( snapshot, logCacheFlushId, snapshotTimeRangeTracker, status); } /* * @param cache * @param logCacheFlushId * @return StoreFile created. * @throws IOException */ private StoreFile internalFlushCache(final SortedSet<KeyValue> set, final long logCacheFlushId, TimeRangeTracker snapshotTimeRangeTracker, MonitoredTask status) throws IOException { StoreFile.Writer writer; String fileName; // Find the smallest read point across all the Scanners. long smallestReadPoint = region.getSmallestReadPoint(); long flushed = 0; // Don't flush if there are no entries. if (set.size() == 0) { return null; } Scan scan = new Scan(); scan.setMaxVersions(maxVersions); // Use a store scanner to find which rows to flush. // Note that we need to retain deletes, hence // pass true as the StoreScanner's retainDeletesInOutput argument. InternalScanner scanner = new StoreScanner(this, scan, Collections.singletonList(new CollectionBackedScanner(set, this.comparator)), true, this.region.getSmallestReadPoint()); try { // TODO: We can fail in the below block before we complete adding this // flush to list of store files. Add cleanup of anything put on filesystem // if we fail. synchronized (flushLock) { status.setStatus("Flushing " + this + ": creating writer"); // A. Write the map out to the disk writer = createWriterInTmp(set.size()); writer.setTimeRangeTracker(snapshotTimeRangeTracker); fileName = writer.getPath().getName(); try { List<KeyValue> kvs = new ArrayList<KeyValue>(); boolean hasMore; do { hasMore = scanner.next(kvs); if (!kvs.isEmpty()) { for (KeyValue kv : kvs) { // If we know that this KV is going to be included always, then let us // set its memstoreTS to 0. This will help us save space when writing to disk. if (kv.getMemstoreTS() <= smallestReadPoint) { // let us not change the original KV. It could be in the memstore // changing its memstoreTS could affect other threads/scanners. kv = kv.shallowCopy(); kv.setMemstoreTS(0); } writer.append(kv); flushed += this.memstore.heapSizeChange(kv, true); } kvs.clear(); } } while (hasMore); } finally { // Write out the log sequence number that corresponds to this output // hfile. The hfile is current up to and including logCacheFlushId. status.setStatus("Flushing " + this + ": appending metadata"); writer.appendMetadata(logCacheFlushId, false); status.setStatus("Flushing " + this + ": closing flushed file"); writer.close(); } } } finally { scanner.close(); } // Write-out finished successfully, move into the right spot Path dstPath = new Path(homedir, fileName); validateStoreFile(writer.getPath()); String msg = "Renaming flushed file at " + writer.getPath() + " to " + dstPath; LOG.debug(msg); status.setStatus("Flushing " + this + ": " + msg); if (!fs.rename(writer.getPath(), dstPath)) { LOG.warn("Unable to rename " + writer.getPath() + " to " + dstPath); } status.setStatus("Flushing " + this + ": reopening flushed file"); StoreFile sf = new StoreFile(this.fs, dstPath, this.conf, this.cacheConf, this.family.getBloomFilterType()); StoreFile.Reader r = sf.createReader(); this.storeSize += r.length(); this.totalUncompressedBytes += r.getTotalUncompressedBytes(); if (LOG.isInfoEnabled()) { LOG.info("Added " + sf + ", entries=" + r.getEntries() + ", sequenceid=" + logCacheFlushId + ", memsize=" + StringUtils.humanReadableInt(flushed) + ", filesize=" + StringUtils.humanReadableInt(r.length())); } return sf; } /* * @param maxKeyCount * @return Writer for a new StoreFile in the tmp dir. */ private StoreFile.Writer createWriterInTmp(int maxKeyCount) throws IOException { return createWriterInTmp(maxKeyCount, this.compression); } /* * @param maxKeyCount * @param compression Compression algorithm to use * @return Writer for a new StoreFile in the tmp dir. */ private StoreFile.Writer createWriterInTmp(int maxKeyCount, Compression.Algorithm compression) throws IOException { return StoreFile.createWriter(this.fs, region.getTmpDir(), this.blocksize, compression, this.comparator, this.conf, this.cacheConf, this.family.getBloomFilterType(), maxKeyCount); } /* * Change storefiles adding into place the Reader produced by this new flush. * @param sf * @param set That was used to make the passed file <code>p</code>. * @throws IOException * @return Whether compaction is required. */ private boolean updateStorefiles(final StoreFile sf, final SortedSet<KeyValue> set) throws IOException { this.lock.writeLock().lock(); try { ArrayList<StoreFile> newList = new ArrayList<StoreFile>(storefiles); newList.add(sf); storefiles = sortAndClone(newList); this.memstore.clearSnapshot(set); } finally { // We need the lock, as long as we are updating the storefiles // or changing the memstore. Let us release it before calling // notifyChangeReadersObservers. See HBASE-4485 for a possible // deadlock scenario that could have happened if continue to hold // the lock. this.lock.writeLock().unlock(); } // Tell listeners of the change in readers. notifyChangedReadersObservers(); return needsCompaction(); } /* * Notify all observers that set of Readers has changed. * @throws IOException */ private void notifyChangedReadersObservers() throws IOException { for (ChangedReadersObserver o: this.changedReaderObservers) { o.updateReaders(); } } protected List<KeyValueScanner> getScanners(boolean cacheBlocks, boolean isGet, boolean isCompaction) throws IOException { List<StoreFile> storeFiles; List<KeyValueScanner> memStoreScanners; this.lock.readLock().lock(); try { storeFiles = this.getStorefiles(); memStoreScanners = this.memstore.getScanners(); } finally { this.lock.readLock().unlock(); } // First the store file scanners // TODO this used to get the store files in descending order, // but now we get them in ascending order, which I think is // actually more correct, since memstore get put at the end. List<StoreFileScanner> sfScanners = StoreFileScanner .getScannersForStoreFiles(storeFiles, cacheBlocks, isGet, isCompaction); List<KeyValueScanner> scanners = new ArrayList<KeyValueScanner>(sfScanners.size()+1); scanners.addAll(sfScanners); // Then the memstore scanners scanners.addAll(memStoreScanners); return scanners; } /* * @param o Observer who wants to know about changes in set of Readers */ void addChangedReaderObserver(ChangedReadersObserver o) { this.changedReaderObservers.add(o); } /* * @param o Observer no longer interested in changes in set of Readers. */ void deleteChangedReaderObserver(ChangedReadersObserver o) { // We don't check if observer present; it may not be (legitimately) this.changedReaderObservers.remove(o); } ////////////////////////////////////////////////////////////////////////////// // Compaction ////////////////////////////////////////////////////////////////////////////// /** * Compact the StoreFiles. This method may take some time, so the calling * thread must be able to block for long periods. * * <p>During this time, the Store can work as usual, getting values from * StoreFiles and writing new StoreFiles from the memstore. * * Existing StoreFiles are not destroyed until the new compacted StoreFile is * completely written-out to disk. * * <p>The compactLock prevents multiple simultaneous compactions. * The structureLock prevents us from interfering with other write operations. * * <p>We don't want to hold the structureLock for the whole time, as a compact() * can be lengthy and we want to allow cache-flushes during this period. * * @param CompactionRequest * compaction details obtained from requestCompaction() * @throws IOException */ void compact(CompactionRequest cr) throws IOException { if (cr == null || cr.getFiles().isEmpty()) { return; } Preconditions.checkArgument(cr.getStore().toString() .equals(this.toString())); List<StoreFile> filesToCompact = cr.getFiles(); synchronized (filesCompacting) { // sanity check: we're compacting files that this store knows about // TODO: change this to LOG.error() after more debugging Preconditions.checkArgument(filesCompacting.containsAll(filesToCompact)); } // Max-sequenceID is the last key in the files we're compacting long maxId = StoreFile.getMaxSequenceIdInList(filesToCompact); // Ready to go. Have list of files to compact. LOG.info("Starting compaction of " + filesToCompact.size() + " file(s) in " + this.storeNameStr + " of " + this.region.getRegionInfo().getRegionNameAsString() + " into tmpdir=" + region.getTmpDir() + ", seqid=" + maxId + ", totalSize=" + StringUtils.humanReadableInt(cr.getSize())); StoreFile sf = null; try { StoreFile.Writer writer = compactStore(filesToCompact, cr.isMajor(), maxId); // Move the compaction into place. sf = completeCompaction(filesToCompact, writer); if (region.getCoprocessorHost() != null) { region.getCoprocessorHost().postCompact(this, sf); } } finally { synchronized (filesCompacting) { filesCompacting.removeAll(filesToCompact); } } LOG.info("Completed" + (cr.isMajor() ? " major " : " ") + "compaction of " + filesToCompact.size() + " file(s) in " + this.storeNameStr + " of " + this.region.getRegionInfo().getRegionNameAsString() + " into " + (sf == null ? "none" : sf.getPath().getName()) + ", size=" + (sf == null ? "none" : StringUtils.humanReadableInt(sf.getReader().length())) + "; total size for store is " + StringUtils.humanReadableInt(storeSize)); } /* * Compact the most recent N files. Essentially a hook for testing. */ protected void compactRecent(int N) throws IOException { List<StoreFile> filesToCompact; long maxId; boolean isMajor; this.lock.readLock().lock(); try { synchronized (filesCompacting) { filesToCompact = Lists.newArrayList(storefiles); if (!filesCompacting.isEmpty()) { // exclude all files older than the newest file we're currently // compacting. this allows us to preserve contiguity (HBASE-2856) StoreFile last = filesCompacting.get(filesCompacting.size() - 1); int idx = filesToCompact.indexOf(last); Preconditions.checkArgument(idx != -1); filesToCompact.subList(0, idx + 1).clear(); } int count = filesToCompact.size(); if (N > count) { throw new RuntimeException("Not enough files"); } filesToCompact = filesToCompact.subList(count - N, count); maxId = StoreFile.getMaxSequenceIdInList(filesToCompact); isMajor = (filesToCompact.size() == storefiles.size()); filesCompacting.addAll(filesToCompact); Collections.sort(filesCompacting, StoreFile.Comparators.FLUSH_TIME); } } finally { this.lock.readLock().unlock(); } try { // Ready to go. Have list of files to compact. StoreFile.Writer writer = compactStore(filesToCompact, isMajor, maxId); // Move the compaction into place. StoreFile sf = completeCompaction(filesToCompact, writer); if (region.getCoprocessorHost() != null) { region.getCoprocessorHost().postCompact(this, sf); } } finally { synchronized (filesCompacting) { filesCompacting.removeAll(filesToCompact); } } } boolean hasReferences() { return hasReferences(this.storefiles); } /* * @param files * @return True if any of the files in <code>files</code> are References. */ private boolean hasReferences(Collection<StoreFile> files) { if (files != null && files.size() > 0) { for (StoreFile hsf: files) { if (hsf.isReference()) { return true; } } } return false; } /* * Gets lowest timestamp from candidate StoreFiles * * @param fs * @param dir * @throws IOException */ public static long getLowestTimestamp(final List<StoreFile> candidates) throws IOException { long minTs = Long.MAX_VALUE; for (StoreFile storeFile : candidates) { minTs = Math.min(minTs, storeFile.getModificationTimeStamp()); } return minTs; } /** getter for CompactionProgress object * @return CompactionProgress object */ public CompactionProgress getCompactionProgress() { return this.progress; } /* * @return True if we should run a major compaction. */ boolean isMajorCompaction() throws IOException { for (StoreFile sf : this.storefiles) { if (sf.getReader() == null) { LOG.debug("StoreFile " + sf + " has null Reader"); return false; } } List<StoreFile> candidates = new ArrayList<StoreFile>(this.storefiles); // exclude files above the max compaction threshold // except: save all references. we MUST compact them int pos = 0; while (pos < candidates.size() && candidates.get(pos).getReader().length() > this.maxCompactSize && !candidates.get(pos).isReference()) ++pos; candidates.subList(0, pos).clear(); return isMajorCompaction(candidates); } /* * @param filesToCompact Files to compact. Can be null. * @return True if we should run a major compaction. */ private boolean isMajorCompaction(final List<StoreFile> filesToCompact) throws IOException { boolean result = false; if (filesToCompact == null || filesToCompact.isEmpty() || majorCompactionTime == 0) { return result; } // TODO: Use better method for determining stamp of last major (HBASE-2990) long lowTimestamp = getLowestTimestamp(filesToCompact); long now = System.currentTimeMillis(); if (lowTimestamp > 0l && lowTimestamp < (now - this.majorCompactionTime)) { // Major compaction time has elapsed. if (filesToCompact.size() == 1) { // Single file StoreFile sf = filesToCompact.get(0); long oldest = (sf.getReader().timeRangeTracker == null) ? Long.MIN_VALUE : now - sf.getReader().timeRangeTracker.minimumTimestamp; if (sf.isMajorCompaction() && (this.ttl == HConstants.FOREVER || oldest < this.ttl)) { if (LOG.isDebugEnabled()) { LOG.debug("Skipping major compaction of " + this.storeNameStr + " because one (major) compacted file only and oldestTime " + oldest + "ms is < ttl=" + this.ttl); } } else if (this.ttl != HConstants.FOREVER && oldest > this.ttl) { LOG.debug("Major compaction triggered on store " + this.storeNameStr + ", because keyvalues outdated; time since last major compaction " + (now - lowTimestamp) + "ms"); result = true; } } else { if (LOG.isDebugEnabled()) { LOG.debug("Major compaction triggered on store " + this.storeNameStr + "; time since last major compaction " + (now - lowTimestamp) + "ms"); } result = true; } } return result; } long getNextMajorCompactTime() { // default = 24hrs long ret = conf.getLong(HConstants.MAJOR_COMPACTION_PERIOD, 1000*60*60*24); if (family.getValue(HConstants.MAJOR_COMPACTION_PERIOD) != null) { String strCompactionTime = family.getValue(HConstants.MAJOR_COMPACTION_PERIOD); ret = (new Long(strCompactionTime)).longValue(); } if (ret > 0) { // default = 20% = +/- 4.8 hrs double jitterPct = conf.getFloat("hbase.hregion.majorcompaction.jitter", 0.20F); if (jitterPct > 0) { long jitter = Math.round(ret * jitterPct); ret += jitter - Math.round(2L * jitter * Math.random()); } } return ret; } public CompactionRequest requestCompaction() { // don't even select for compaction if writes are disabled if (!this.region.areWritesEnabled()) { return null; } CompactionRequest ret = null; this.lock.readLock().lock(); try { synchronized (filesCompacting) { // candidates = all storefiles not already in compaction queue List<StoreFile> candidates = Lists.newArrayList(storefiles); if (!filesCompacting.isEmpty()) { // exclude all files older than the newest file we're currently // compacting. this allows us to preserve contiguity (HBASE-2856) StoreFile last = filesCompacting.get(filesCompacting.size() - 1); int idx = candidates.indexOf(last); Preconditions.checkArgument(idx != -1); candidates.subList(0, idx + 1).clear(); } boolean override = false; if (region.getCoprocessorHost() != null) { override = region.getCoprocessorHost().preCompactSelection( this, candidates); } List<StoreFile> filesToCompact; if (override) { // coprocessor is overriding normal file selection filesToCompact = candidates; } else { filesToCompact = compactSelection(candidates); } if (region.getCoprocessorHost() != null) { region.getCoprocessorHost().postCompactSelection(this, ImmutableList.copyOf(filesToCompact)); } // no files to compact if (filesToCompact.isEmpty()) { return null; } // basic sanity check: do not try to compact the same StoreFile twice. if (!Collections.disjoint(filesCompacting, filesToCompact)) { // TODO: change this from an IAE to LOG.error after sufficient testing Preconditions.checkArgument(false, "%s overlaps with %s", filesToCompact, filesCompacting); } filesCompacting.addAll(filesToCompact); Collections.sort(filesCompacting, StoreFile.Comparators.FLUSH_TIME); // major compaction iff all StoreFiles are included boolean isMajor = (filesToCompact.size() == this.storefiles.size()); if (isMajor) { // since we're enqueuing a major, update the compaction wait interval this.forceMajor = false; this.majorCompactionTime = getNextMajorCompactTime(); } // everything went better than expected. create a compaction request int pri = getCompactPriority(); ret = new CompactionRequest(region, this, filesToCompact, isMajor, pri); } } catch (IOException ex) { LOG.error("Compaction Request failed for region " + region + ", store " + this, RemoteExceptionHandler.checkIOException(ex)); } finally { this.lock.readLock().unlock(); } return ret; } public void finishRequest(CompactionRequest cr) { synchronized (filesCompacting) { filesCompacting.removeAll(cr.getFiles()); } } /** * Algorithm to choose which files to compact * * Configuration knobs: * "hbase.hstore.compaction.ratio" * normal case: minor compact when file <= sum(smaller_files) * ratio * "hbase.hstore.compaction.min.size" * unconditionally compact individual files below this size * "hbase.hstore.compaction.max.size" * never compact individual files above this size (unless splitting) * "hbase.hstore.compaction.min" * min files needed to minor compact * "hbase.hstore.compaction.max" * max files to compact at once (avoids OOM) * * @param candidates candidate files, ordered from oldest to newest * @return subset copy of candidate list that meets compaction criteria * @throws IOException */ List<StoreFile> compactSelection(List<StoreFile> candidates) throws IOException { // ASSUMPTION!!! filesCompacting is locked when calling this function /* normal skew: * * older ----> newer * _ * | | _ * | | | | _ * --|-|- |-|- |-|---_-------_------- minCompactSize * | | | | | | | | _ | | * | | | | | | | | | | | | * | | | | | | | | | | | | */ List<StoreFile> filesToCompact = new ArrayList<StoreFile>(candidates); boolean forcemajor = this.forceMajor && filesCompacting.isEmpty(); if (!forcemajor) { // do not compact old files above a configurable threshold // save all references. we MUST compact them int pos = 0; while (pos < filesToCompact.size() && filesToCompact.get(pos).getReader().length() > maxCompactSize && !filesToCompact.get(pos).isReference()) ++pos; filesToCompact.subList(0, pos).clear(); } if (filesToCompact.isEmpty()) { LOG.debug(this.getHRegionInfo().getEncodedName() + " - " + this.storeNameStr + ": no store files to compact"); return filesToCompact; } // major compact on user action or age (caveat: we have too many files) boolean majorcompaction = filesToCompact.size() < this.maxFilesToCompact && (forcemajor || isMajorCompaction(filesToCompact)); if (!majorcompaction && !hasReferences(filesToCompact)) { // we're doing a minor compaction, let's see what files are applicable int start = 0; double r = this.compactRatio; // skip selection algorithm if we don't have enough files if (filesToCompact.size() < this.minFilesToCompact) { return Collections.emptyList(); } /* TODO: add sorting + unit test back in when HBASE-2856 is fixed // Sort files by size to correct when normal skew is altered by bulk load. Collections.sort(filesToCompact, StoreFile.Comparators.FILE_SIZE); */ // get store file sizes for incremental compacting selection. int countOfFiles = filesToCompact.size(); long [] fileSizes = new long[countOfFiles]; long [] sumSize = new long[countOfFiles]; for (int i = countOfFiles-1; i >= 0; --i) { StoreFile file = filesToCompact.get(i); fileSizes[i] = file.getReader().length(); // calculate the sum of fileSizes[i,i+maxFilesToCompact-1) for algo int tooFar = i + this.maxFilesToCompact - 1; sumSize[i] = fileSizes[i] + ((i+1 < countOfFiles) ? sumSize[i+1] : 0) - ((tooFar < countOfFiles) ? fileSizes[tooFar] : 0); } /* Start at the oldest file and stop when you find the first file that * meets compaction criteria: * (1) a recently-flushed, small file (i.e. <= minCompactSize) * OR * (2) within the compactRatio of sum(newer_files) * Given normal skew, any newer files will also meet this criteria * * Additional Note: * If fileSizes.size() >> maxFilesToCompact, we will recurse on * compact(). Consider the oldest files first to avoid a * situation where we always compact [end-threshold,end). Then, the * last file becomes an aggregate of the previous compactions. */ while(countOfFiles - start >= this.minFilesToCompact && fileSizes[start] > Math.max(minCompactSize, (long)(sumSize[start+1] * r))) { ++start; } int end = Math.min(countOfFiles, start + this.maxFilesToCompact); long totalSize = fileSizes[start] + ((start+1 < countOfFiles) ? sumSize[start+1] : 0); filesToCompact = filesToCompact.subList(start, end); // if we don't have enough files to compact, just wait if (filesToCompact.size() < this.minFilesToCompact) { if (LOG.isDebugEnabled()) { LOG.debug("Skipped compaction of " + this.storeNameStr + ". Only " + (end - start) + " file(s) of size " + StringUtils.humanReadableInt(totalSize) + " have met compaction criteria."); } return Collections.emptyList(); } } else { // all files included in this compaction, up to max if (filesToCompact.size() > this.maxFilesToCompact) { int pastMax = filesToCompact.size() - this.maxFilesToCompact; filesToCompact.subList(0, pastMax).clear(); } } return filesToCompact; } /** * Do a minor/major compaction on an explicit set of storefiles in a Store. * Uses the scan infrastructure to make it easy. * * @param filesToCompact which files to compact * @param majorCompaction true to major compact (prune all deletes, max versions, etc) * @param maxId Readers maximum sequence id. * @return Product of compaction or null if all cells expired or deleted and * nothing made it through the compaction. * @throws IOException */ StoreFile.Writer compactStore(final Collection<StoreFile> filesToCompact, final boolean majorCompaction, final long maxId) throws IOException { // calculate maximum key count after compaction (for blooms) int maxKeyCount = 0; for (StoreFile file : filesToCompact) { StoreFile.Reader r = file.getReader(); if (r != null) { // NOTE: getFilterEntries could cause under-sized blooms if the user // switches bloom type (e.g. from ROW to ROWCOL) long keyCount = (r.getBloomFilterType() == family.getBloomFilterType()) ? r.getFilterEntries() : r.getEntries(); maxKeyCount += keyCount; if (LOG.isDebugEnabled()) { LOG.debug("Compacting " + file + ", keycount=" + keyCount + ", bloomtype=" + r.getBloomFilterType().toString() + ", size=" + StringUtils.humanReadableInt(r.length()) ); } } } // keep track of compaction progress progress = new CompactionProgress(maxKeyCount); // For each file, obtain a scanner: List<StoreFileScanner> scanners = StoreFileScanner .getScannersForStoreFiles(filesToCompact, false, false, true); // Make the instantiation lazy in case compaction produces no product; i.e. // where all source cells are expired or deleted. StoreFile.Writer writer = null; // Find the smallest read point across all the Scanners. long smallestReadPoint = region.getSmallestReadPoint(); MultiVersionConsistencyControl.setThreadReadPoint(smallestReadPoint); try { InternalScanner scanner = null; try { Scan scan = new Scan(); scan.setMaxVersions(family.getMaxVersions()); /* include deletes, unless we are doing a major compaction */ scanner = new StoreScanner(this, scan, scanners, !majorCompaction, smallestReadPoint); if (region.getCoprocessorHost() != null) { InternalScanner cpScanner = region.getCoprocessorHost().preCompact( this, scanner); // NULL scanner returned from coprocessor hooks means skip normal processing if (cpScanner == null) { return null; } scanner = cpScanner; } int bytesWritten = 0; // since scanner.next() can return 'false' but still be delivering data, // we have to use a do/while loop. ArrayList<KeyValue> kvs = new ArrayList<KeyValue>(); // Limit to "hbase.hstore.compaction.kv.max" (default 10) to avoid OOME boolean hasMore; do { hasMore = scanner.next(kvs, this.compactionKVMax); if (writer == null && !kvs.isEmpty()) { writer = createWriterInTmp(maxKeyCount, this.compactionCompression); } if (writer != null) { // output to writer: for (KeyValue kv : kvs) { if (kv.getMemstoreTS() <= smallestReadPoint) { kv.setMemstoreTS(0); } writer.append(kv); // update progress per key ++progress.currentCompactedKVs; // check periodically to see if a system stop is requested if (Store.closeCheckInterval > 0) { bytesWritten += kv.getLength(); if (bytesWritten > Store.closeCheckInterval) { bytesWritten = 0; if (!this.region.areWritesEnabled()) { writer.close(); fs.delete(writer.getPath(), false); throw new InterruptedIOException( "Aborting compaction of store " + this + " in region " + this.region + " because user requested stop."); } } } } } kvs.clear(); } while (hasMore); } finally { if (scanner != null) { scanner.close(); } } } finally { if (writer != null) { writer.appendMetadata(maxId, majorCompaction); writer.close(); } } return writer; } /** * Validates a store file by opening and closing it. In HFileV2 this should * not be an expensive operation. * * @param path the path to the store file */ private void validateStoreFile(Path path) throws IOException { StoreFile storeFile = null; try { storeFile = new StoreFile(this.fs, path, this.conf, this.cacheConf, this.family.getBloomFilterType()); storeFile.createReader(); } catch (IOException e) { LOG.error("Failed to open store file : " + path + ", keeping it in tmp location", e); throw e; } finally { if (storeFile != null) { storeFile.closeReader(false); } } } /* * <p>It works by processing a compaction that's been written to disk. * * <p>It is usually invoked at the end of a compaction, but might also be * invoked at HStore startup, if the prior execution died midway through. * * <p>Moving the compacted TreeMap into place means: * <pre> * 1) Moving the new compacted StoreFile into place * 2) Unload all replaced StoreFile, close and collect list to delete. * 3) Loading the new TreeMap. * 4) Compute new store size * </pre> * * @param compactedFiles list of files that were compacted * @param compactedFile StoreFile that is the result of the compaction * @return StoreFile created. May be null. * @throws IOException */ StoreFile completeCompaction(final Collection<StoreFile> compactedFiles, final StoreFile.Writer compactedFile) throws IOException { // 1. Moving the new files into place -- if there is a new file (may not // be if all cells were expired or deleted). StoreFile result = null; if (compactedFile != null) { validateStoreFile(compactedFile.getPath()); // Move the file into the right spot Path origPath = compactedFile.getPath(); Path destPath = new Path(homedir, origPath.getName()); LOG.info("Renaming compacted file at " + origPath + " to " + destPath); if (!fs.rename(origPath, destPath)) { LOG.error("Failed move of compacted file " + origPath + " to " + destPath); throw new IOException("Failed move of compacted file " + origPath + " to " + destPath); } result = new StoreFile(this.fs, destPath, this.conf, this.cacheConf, this.family.getBloomFilterType()); result.createReader(); } try { this.lock.writeLock().lock(); try { // Change this.storefiles so it reflects new state but do not // delete old store files until we have sent out notification of // change in case old files are still being accessed by outstanding // scanners. ArrayList<StoreFile> newStoreFiles = Lists.newArrayList(storefiles); newStoreFiles.removeAll(compactedFiles); filesCompacting.removeAll(compactedFiles); // safe bc: lock.writeLock() // If a StoreFile result, move it into place. May be null. if (result != null) { newStoreFiles.add(result); } this.storefiles = sortAndClone(newStoreFiles); } finally { // We need the lock, as long as we are updating the storefiles // or changing the memstore. Let us release it before calling // notifyChangeReadersObservers. See HBASE-4485 for a possible // deadlock scenario that could have happened if continue to hold // the lock. this.lock.writeLock().unlock(); } // Tell observers that list of StoreFiles has changed. notifyChangedReadersObservers(); // Finally, delete old store files. for (StoreFile hsf: compactedFiles) { hsf.deleteReader(); } } catch (IOException e) { e = RemoteExceptionHandler.checkIOException(e); LOG.error("Failed replacing compacted files in " + this.storeNameStr + ". Compacted file is " + (result == null? "none": result.toString()) + ". Files replaced " + compactedFiles.toString() + " some of which may have been already removed", e); } // 4. Compute new store size this.storeSize = 0L; this.totalUncompressedBytes = 0L; for (StoreFile hsf : this.storefiles) { StoreFile.Reader r = hsf.getReader(); if (r == null) { LOG.warn("StoreFile " + hsf + " has a null Reader"); continue; } this.storeSize += r.length(); this.totalUncompressedBytes += r.getTotalUncompressedBytes(); } return result; } public ImmutableList<StoreFile> sortAndClone(List<StoreFile> storeFiles) { Collections.sort(storeFiles, StoreFile.Comparators.FLUSH_TIME); ImmutableList<StoreFile> newList = ImmutableList.copyOf(storeFiles); return newList; } // //////////////////////////////////////////////////////////////////////////// // Accessors. // (This is the only section that is directly useful!) ////////////////////////////////////////////////////////////////////////////// /** * @return the number of files in this store */ public int getNumberOfstorefiles() { return this.storefiles.size(); } /* * @param wantedVersions How many versions were asked for. * @return wantedVersions or this families' {@link HConstants#VERSIONS}. */ int versionsToReturn(final int wantedVersions) { if (wantedVersions <= 0) { throw new IllegalArgumentException("Number of versions must be > 0"); } // Make sure we do not return more than maximum versions for this store. int maxVersions = this.family.getMaxVersions(); return wantedVersions > maxVersions ? maxVersions: wantedVersions; } static boolean isExpired(final KeyValue key, final long oldestTimestamp) { return key.getTimestamp() < oldestTimestamp; } /** * Find the key that matches <i>row</i> exactly, or the one that immediately * preceeds it. WARNING: Only use this method on a table where writes occur * with strictly increasing timestamps. This method assumes this pattern of * writes in order to make it reasonably performant. Also our search is * dependent on the axiom that deletes are for cells that are in the container * that follows whether a memstore snapshot or a storefile, not for the * current container: i.e. we'll see deletes before we come across cells we * are to delete. Presumption is that the memstore#kvset is processed before * memstore#snapshot and so on. * @param row The row key of the targeted row. * @return Found keyvalue or null if none found. * @throws IOException */ KeyValue getRowKeyAtOrBefore(final byte[] row) throws IOException { // If minVersions is set, we will not ignore expired KVs. // As we're only looking for the latest matches, that should be OK. // With minVersions > 0 we guarantee that any KV that has any version // at all (expired or not) has at least one version that will not expire. // Note that this method used to take a KeyValue as arguments. KeyValue // can be back-dated, a row key cannot. long ttlToUse = this.minVersions > 0 ? Long.MAX_VALUE : this.ttl; KeyValue kv = new KeyValue(row, HConstants.LATEST_TIMESTAMP); GetClosestRowBeforeTracker state = new GetClosestRowBeforeTracker( this.comparator, kv, ttlToUse, this.region.getRegionInfo().isMetaRegion()); this.lock.readLock().lock(); try { // First go to the memstore. Pick up deletes and candidates. this.memstore.getRowKeyAtOrBefore(state); // Check if match, if we got a candidate on the asked for 'kv' row. // Process each store file. Run through from newest to oldest. for (StoreFile sf : Lists.reverse(storefiles)) { // Update the candidate keys from the current map file rowAtOrBeforeFromStoreFile(sf, state); } return state.getCandidate(); } finally { this.lock.readLock().unlock(); } } /* * Check an individual MapFile for the row at or before a given row. * @param f * @param state * @throws IOException */ private void rowAtOrBeforeFromStoreFile(final StoreFile f, final GetClosestRowBeforeTracker state) throws IOException { StoreFile.Reader r = f.getReader(); if (r == null) { LOG.warn("StoreFile " + f + " has a null Reader"); return; } // TODO: Cache these keys rather than make each time? byte [] fk = r.getFirstKey(); KeyValue firstKV = KeyValue.createKeyValueFromKey(fk, 0, fk.length); byte [] lk = r.getLastKey(); KeyValue lastKV = KeyValue.createKeyValueFromKey(lk, 0, lk.length); KeyValue firstOnRow = state.getTargetKey(); if (this.comparator.compareRows(lastKV, firstOnRow) < 0) { // If last key in file is not of the target table, no candidates in this // file. Return. if (!state.isTargetTable(lastKV)) return; // If the row we're looking for is past the end of file, set search key to // last key. TODO: Cache last and first key rather than make each time. firstOnRow = new KeyValue(lastKV.getRow(), HConstants.LATEST_TIMESTAMP); } // Get a scanner that caches blocks and that uses pread. HFileScanner scanner = r.getHFileReader().getScanner(true, true, false); // Seek scanner. If can't seek it, return. if (!seekToScanner(scanner, firstOnRow, firstKV)) return; // If we found candidate on firstOnRow, just return. THIS WILL NEVER HAPPEN! // Unlikely that there'll be an instance of actual first row in table. if (walkForwardInSingleRow(scanner, firstOnRow, state)) return; // If here, need to start backing up. while (scanner.seekBefore(firstOnRow.getBuffer(), firstOnRow.getKeyOffset(), firstOnRow.getKeyLength())) { KeyValue kv = scanner.getKeyValue(); if (!state.isTargetTable(kv)) break; if (!state.isBetterCandidate(kv)) break; // Make new first on row. firstOnRow = new KeyValue(kv.getRow(), HConstants.LATEST_TIMESTAMP); // Seek scanner. If can't seek it, break. if (!seekToScanner(scanner, firstOnRow, firstKV)) break; // If we find something, break; if (walkForwardInSingleRow(scanner, firstOnRow, state)) break; } } /* * Seek the file scanner to firstOnRow or first entry in file. * @param scanner * @param firstOnRow * @param firstKV * @return True if we successfully seeked scanner. * @throws IOException */ private boolean seekToScanner(final HFileScanner scanner, final KeyValue firstOnRow, final KeyValue firstKV) throws IOException { KeyValue kv = firstOnRow; // If firstOnRow < firstKV, set to firstKV if (this.comparator.compareRows(firstKV, firstOnRow) == 0) kv = firstKV; int result = scanner.seekTo(kv.getBuffer(), kv.getKeyOffset(), kv.getKeyLength()); return result >= 0; } /* * When we come in here, we are probably at the kv just before we break into * the row that firstOnRow is on. Usually need to increment one time to get * on to the row we are interested in. * @param scanner * @param firstOnRow * @param state * @return True we found a candidate. * @throws IOException */ private boolean walkForwardInSingleRow(final HFileScanner scanner, final KeyValue firstOnRow, final GetClosestRowBeforeTracker state) throws IOException { boolean foundCandidate = false; do { KeyValue kv = scanner.getKeyValue(); // If we are not in the row, skip. if (this.comparator.compareRows(kv, firstOnRow) < 0) continue; // Did we go beyond the target row? If so break. if (state.isTooFar(kv, firstOnRow)) break; if (state.isExpired(kv)) { continue; } // If we added something, this row is a contender. break. if (state.handle(kv)) { foundCandidate = true; break; } } while(scanner.next()); return foundCandidate; } public boolean canSplit() { this.lock.readLock().lock(); try { // Not splitable if we find a reference store file present in the store. for (StoreFile sf : storefiles) { if (sf.isReference()) { if (LOG.isDebugEnabled()) { LOG.debug(sf + " is not splittable"); } return false; } } return true; } finally { this.lock.readLock().unlock(); } } /** * Determines if Store should be split * @return byte[] if store should be split, null otherwise. */ public byte[] getSplitPoint() { this.lock.readLock().lock(); try { // sanity checks if (this.storefiles.isEmpty()) { return null; } // Should already be enforced by the split policy! assert !this.region.getRegionInfo().isMetaRegion(); // Not splitable if we find a reference store file present in the store. long maxSize = 0L; StoreFile largestSf = null; for (StoreFile sf : storefiles) { if (sf.isReference()) { // Should already be enforced since we return false in this case assert false : "getSplitPoint() called on a region that can't split!"; return null; } StoreFile.Reader r = sf.getReader(); if (r == null) { LOG.warn("Storefile " + sf + " Reader is null"); continue; } long size = r.length(); if (size > maxSize) { // This is the largest one so far maxSize = size; largestSf = sf; } } StoreFile.Reader r = largestSf.getReader(); if (r == null) { LOG.warn("Storefile " + largestSf + " Reader is null"); return null; } // Get first, last, and mid keys. Midkey is the key that starts block // in middle of hfile. Has column and timestamp. Need to return just // the row we want to split on as midkey. byte [] midkey = r.midkey(); if (midkey != null) { KeyValue mk = KeyValue.createKeyValueFromKey(midkey, 0, midkey.length); byte [] fk = r.getFirstKey(); KeyValue firstKey = KeyValue.createKeyValueFromKey(fk, 0, fk.length); byte [] lk = r.getLastKey(); KeyValue lastKey = KeyValue.createKeyValueFromKey(lk, 0, lk.length); // if the midkey is the same as the first and last keys, then we cannot // (ever) split this region. if (this.comparator.compareRows(mk, firstKey) == 0 && this.comparator.compareRows(mk, lastKey) == 0) { if (LOG.isDebugEnabled()) { LOG.debug("cannot split because midkey is the same as first or " + "last row"); } return null; } return mk.getRow(); } } catch(IOException e) { LOG.warn("Failed getting store size for " + this.storeNameStr, e); } finally { this.lock.readLock().unlock(); } return null; } /** @return aggregate size of all HStores used in the last compaction */ public long getLastCompactSize() { return this.lastCompactSize; } /** @return aggregate size of HStore */ public long getSize() { return storeSize; } public void triggerMajorCompaction() { this.forceMajor = true; } boolean getForceMajorCompaction() { return this.forceMajor; } ////////////////////////////////////////////////////////////////////////////// // File administration ////////////////////////////////////////////////////////////////////////////// /** * Return a scanner for both the memstore and the HStore files * @throws IOException */ public StoreScanner getScanner(Scan scan, final NavigableSet<byte []> targetCols) throws IOException { lock.readLock().lock(); try { return new StoreScanner(this, scan, targetCols); } finally { lock.readLock().unlock(); } } @Override public String toString() { return this.storeNameStr; } /** * @return Count of store files */ int getStorefilesCount() { return this.storefiles.size(); } /** * @return The size of the store files, in bytes, uncompressed. */ long getStoreSizeUncompressed() { return this.totalUncompressedBytes; } /** * @return The size of the store files, in bytes. */ long getStorefilesSize() { long size = 0; for (StoreFile s: storefiles) { StoreFile.Reader r = s.getReader(); if (r == null) { LOG.warn("StoreFile " + s + " has a null Reader"); continue; } size += r.length(); } return size; } /** * @return The size of the store file indexes, in bytes. */ long getStorefilesIndexSize() { long size = 0; for (StoreFile s: storefiles) { StoreFile.Reader r = s.getReader(); if (r == null) { LOG.warn("StoreFile " + s + " has a null Reader"); continue; } size += r.indexSize(); } return size; } /** * Returns the total size of all index blocks in the data block indexes, * including the root level, intermediate levels, and the leaf level for * multi-level indexes, or just the root level for single-level indexes. * * @return the total size of block indexes in the store */ long getTotalStaticIndexSize() { long size = 0; for (StoreFile s : storefiles) { size += s.getReader().getUncompressedDataIndexSize(); } return size; } /** * Returns the total byte size of all Bloom filter bit arrays. For compound * Bloom filters even the Bloom blocks currently not loaded into the block * cache are counted. * * @return the total size of all Bloom filters in the store */ long getTotalStaticBloomSize() { long size = 0; for (StoreFile s : storefiles) { StoreFile.Reader r = s.getReader(); size += r.getTotalBloomSize(); } return size; } /** * @return The priority that this store should have in the compaction queue */ public int getCompactPriority() { return this.blockingStoreFileCount - this.storefiles.size(); } HRegion getHRegion() { return this.region; } HRegionInfo getHRegionInfo() { return this.region.regionInfo; } /** * Increments the value for the given row/family/qualifier. * * This function will always be seen as atomic by other readers * because it only puts a single KV to memstore. Thus no * read/write control necessary. * * @param row * @param f * @param qualifier * @param newValue the new value to set into memstore * @return memstore size delta * @throws IOException */ public long updateColumnValue(byte [] row, byte [] f, byte [] qualifier, long newValue) throws IOException { this.lock.readLock().lock(); try { long now = EnvironmentEdgeManager.currentTimeMillis(); return this.memstore.updateColumnValue(row, f, qualifier, newValue, now); } finally { this.lock.readLock().unlock(); } } /** * Adds or replaces the specified KeyValues. * <p> * For each KeyValue specified, if a cell with the same row, family, and * qualifier exists in MemStore, it will be replaced. Otherwise, it will just * be inserted to MemStore. * <p> * This operation is atomic on each KeyValue (row/family/qualifier) but not * necessarily atomic across all of them. * @param kvs * @return memstore size delta * @throws IOException */ public long upsert(List<KeyValue> kvs) throws IOException { this.lock.readLock().lock(); try { // TODO: Make this operation atomic w/ MVCC return this.memstore.upsert(kvs); } finally { this.lock.readLock().unlock(); } } public StoreFlusher getStoreFlusher(long cacheFlushId) { return new StoreFlusherImpl(cacheFlushId); } private class StoreFlusherImpl implements StoreFlusher { private long cacheFlushId; private SortedSet<KeyValue> snapshot; private StoreFile storeFile; private TimeRangeTracker snapshotTimeRangeTracker; private StoreFlusherImpl(long cacheFlushId) { this.cacheFlushId = cacheFlushId; } @Override public void prepare() { memstore.snapshot(); this.snapshot = memstore.getSnapshot(); this.snapshotTimeRangeTracker = memstore.getSnapshotTimeRangeTracker(); } @Override public void flushCache(MonitoredTask status) throws IOException { storeFile = Store.this.flushCache( cacheFlushId, snapshot, snapshotTimeRangeTracker, status); } @Override public boolean commit() throws IOException { if (storeFile == null) { return false; } // Add new file to store files. Clear snapshot too while we have // the Store write lock. return Store.this.updateStorefiles(storeFile, snapshot); } } /** * See if there's too much store files in this store * @return true if number of store files is greater than * the number defined in minFilesToCompact */ public boolean needsCompaction() { return (storefiles.size() - filesCompacting.size()) > minFilesToCompact; } /** * Used for tests. Get the cache configuration for this Store. */ public CacheConfig getCacheConfig() { return this.cacheConf; } public static final long FIXED_OVERHEAD = ClassSize.align( ClassSize.OBJECT + (17 * ClassSize.REFERENCE) + (7 * Bytes.SIZEOF_LONG) + (1 * Bytes.SIZEOF_DOUBLE) + (7 * Bytes.SIZEOF_INT) + (1 * Bytes.SIZEOF_BOOLEAN)); public static final long DEEP_OVERHEAD = ClassSize.align(FIXED_OVERHEAD + ClassSize.OBJECT + ClassSize.REENTRANT_LOCK + ClassSize.CONCURRENT_SKIPLISTMAP + ClassSize.CONCURRENT_SKIPLISTMAP_ENTRY + ClassSize.OBJECT); @Override public long heapSize() { return DEEP_OVERHEAD + this.memstore.heapSize(); } public KeyValue.KVComparator getComparator() { return comparator; } }