/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package java.lang;
/**
* The wrapper for the primitive type {@code int}.
* <p>
* As with the specification, this implementation relies on code laid out in <a
* href="http://www.hackersdelight.org/">Henry S. Warren, Jr.'s Hacker's Delight, (Addison Wesley,
* 2002)</a> as well as <a href="http://aggregate.org/MAGIC/">The Aggregate's Magic Algorithms</a>.
*
* JUniversal REMOVED:
*
* getInteger since System.getProperty isn't supported
*
* TYPE since there are no Class objects currently
*
* longValue
*
*
* @see java.lang.Number
* @since 1.1
*/
public final class Integer extends Number implements Comparable<Integer> {
/**
* The value which the receiver represents.
*/
private final int value;
/**
* Constant for the maximum {@code int} value, 2<sup>31</sup>-1.
*/
public static final int MAX_VALUE = 0x7FFFFFFF;
/**
* Constant for the minimum {@code int} value, -2<sup>31</sup>.
*/
public static final int MIN_VALUE = 0x80000000;
/**
* Constant for the number of bits needed to represent an {@code int} in
* two's complement form.
*
* @since 1.5
*/
public static final int SIZE = 32;
/*
* Progressively smaller decimal order of magnitude that can be represented
* by an instance of Integer. Used to help compute the String
* representation.
*/
//private static final int[] decimalScale = new int[] { 1000000000, 100000000,
// 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 };
private static int[] decimalScale = null;
// Note: This can't be set to "int.class", since *that* is
// defined to be "java.lang.Integer.TYPE";
/**
* Constructs a new {@code Integer} with the specified primitive integer
* value.
*
* @param value
* the primitive integer value to store in the new instance.
*/
public Integer(int value) {
this.value = value;
}
/**
* Constructs a new {@code Integer} from the specified string.
*
* @param string
* the string representation of an integer value.
* @throws NumberFormatException
* if {@code string} can not be decoded into an integer value.
* @see #parseInt(String)
*/
public Integer(String string) throws NumberFormatException {
this.value = parseInt(string);
}
@Override
public byte byteValue() {
return (byte) value;
}
/**
* Compares this object to the specified integer object to determine their
* relative order.
*
* @param object
* the integer object to compare this object to.
* @return a negative value if the value of this integer is less than the
* value of {@code object}; 0 if the value of this integer and the
* value of {@code object} are equal; a positive value if the value
* of this integer is greater than the value of {@code object}.
* @see java.lang.Comparable
* @since 1.2
*/
public int compareTo(Integer object) {
return value > object.value ? 1 : (value < object.value ? -1 : 0);
}
/**
* Parses the specified string and returns a {@code Integer} instance if the
* string can be decoded into an integer value. The string may be an
* optional minus sign "-" followed by a hexadecimal ("0x..." or "#..."),
* octal ("0..."), or decimal ("...") representation of an integer.
*
* @param string
* a string representation of an integer value.
* @return an {@code Integer} containing the value represented by
* {@code string}.
* @throws NumberFormatException
* if {@code string} can not be parsed as an integer value.
*/
public static Integer decode(String string) throws NumberFormatException {
int length = string.length(), i = 0;
if (length == 0) {
throw new NumberFormatException();
}
char firstDigit = string.charAt(i);
boolean negative = firstDigit == '-';
if (negative) {
if (length == 1) {
throw new NumberFormatException(string);
}
firstDigit = string.charAt(++i);
}
int base = 10;
if (firstDigit == '0') {
if (++i == length) {
return valueOf(0);
}
if ((firstDigit = string.charAt(i)) == 'x' || firstDigit == 'X') {
if (++i == length) {
throw new NumberFormatException(string);
}
base = 16;
} else {
base = 8;
}
} else if (firstDigit == '#') {
if (++i == length) {
throw new NumberFormatException(string);
}
base = 16;
}
int result = parse(string, i, base, negative);
return valueOf(result);
}
@Override
public double doubleValue() {
return value;
}
/**
* Compares this instance with the specified object and indicates if they
* are equal. In order to be equal, {@code o} must be an instance of
* {@code Integer} and have the same integer value as this object.
*
* @param o
* the object to compare this integer with.
* @return {@code true} if the specified object is equal to this
* {@code Integer}; {@code false} otherwise.
*/
@Override
public boolean equals(Object o) {
return (o instanceof Integer)
&& (value == ((Integer) o).value);
}
@Override
public float floatValue() {
return value;
}
@Override
public int hashCode() {
return value;
}
/**
* Gets the primitive value of this int.
*
* @return this object's primitive value.
*/
@Override
public int intValue() {
return value;
}
/**
* Parses the specified string as a signed decimal integer value. The ASCII
* character \u002d ('-') is recognized as the minus sign.
*
* @param string
* the string representation of an integer value.
* @return the primitive integer value represented by {@code string}.
* @throws NumberFormatException
* if {@code string} is {@code null}, has a length of zero or
* can not be parsed as an integer value.
*/
public static int parseInt(String string) throws NumberFormatException {
return parseInt(string, 10);
}
/**
* Parses the specified string as a signed integer value using the specified
* radix. The ASCII character \u002d ('-') is recognized as the minus sign.
*
* @param string
* the string representation of an integer value.
* @param radix
* the radix to use when parsing.
* @return the primitive integer value represented by {@code string} using
* {@code radix}.
* @throws NumberFormatException
* if {@code string} is {@code null} or has a length of zero,
* {@code radix < Character.MIN_RADIX},
* {@code radix > Character.MAX_RADIX}, or if {@code string}
* can not be parsed as an integer value.
*/
public static int parseInt(String string, int radix)
throws NumberFormatException {
if (string == null || radix < Character.MIN_RADIX
|| radix > Character.MAX_RADIX) {
throw new NumberFormatException();
}
int length = string.length(), i = 0;
if (length == 0) {
throw new NumberFormatException(string);
}
boolean negative = string.charAt(i) == '-';
if (negative && ++i == length) {
throw new NumberFormatException(string);
}
return parse(string, i, radix, negative);
}
private static int parse(String string, int offset, int radix,
boolean negative) throws NumberFormatException {
int max = Integer.MIN_VALUE / radix;
int result = 0, length = string.length();
while (offset < length) {
int digit = Character.digit(string.charAt(offset++), radix);
if (digit == -1) {
throw new NumberFormatException(string);
}
if (max > result) {
throw new NumberFormatException(string);
}
int next = result * radix - digit;
if (next > result) {
throw new NumberFormatException(string);
}
result = next;
}
if (!negative) {
result = -result;
if (result < 0) {
throw new NumberFormatException(string);
}
}
return result;
}
@Override
public short shortValue() {
return (short) value;
}
/**
* Converts the specified integer into its binary string representation. The
* returned string is a concatenation of '0' and '1' characters.
*
* @param i
* the integer to convert.
* @return the binary string representation of {@code i}.
*/
public static String toBinaryString(int i) {
int count = 1, j = i;
if (i < 0) {
count = 32;
} else {
while ((j >>>= 1) != 0) {
count++;
}
}
String buffer = new String(count);
char[] bufferValue = buffer.getValue();
do {
bufferValue[--count] = (char) ((i & 1) + '0');
i >>>= 1;
} while (count > 0);
return buffer;
}
/**
* Converts the specified integer into its hexadecimal string
* representation. The returned string is a concatenation of characters from
* '0' to '9' and 'a' to 'f'.
*
* @param i
* the integer to convert.
* @return the hexadecimal string representation of {@code i}.
*/
public static String toHexString(int i) {
int count = 1, j = i;
if (i < 0) {
count = 8;
} else {
while ((j >>>= 4) != 0) {
count++;
}
}
String buffer = new String(count);
char[] bufferValue = buffer.getValue();
do {
int t = i & 15;
if (t > 9) {
t = t - 10 + 'a';
} else {
t += '0';
}
bufferValue[--count] = (char) t;
i >>>= 4;
} while (count > 0);
return buffer;
}
/**
* Converts the specified integer into its octal string representation. The
* returned string is a concatenation of characters from '0' to '7'.
*
* @param i
* the integer to convert.
* @return the octal string representation of {@code i}.
*/
public static String toOctalString(int i) {
int count = 1, j = i;
if (i < 0) {
count = 11;
} else {
while ((j >>>= 3) != 0) {
count++;
}
}
String buffer = new String(count);
char[] bufferValue = buffer.getValue();
do {
bufferValue[--count] = (char) ((i & 7) + '0');
i >>>= 3;
} while (count > 0);
return buffer;
}
@Override
public String toString() {
return Integer.toString(value);
}
/**
* Converts the specified integer into its decimal string representation.
* The returned string is a concatenation of a minus sign if the number is
* negative and characters from '0' to '9'.
*
* @param value
* the integer to convert.
* @return the decimal string representation of {@code value}.
*/
public static String toString(int value) {
// TODO: Switch back to array with initializer when it's supported
if (decimalScale == null) {
decimalScale[0] = 1000000000;
decimalScale[1] = 100000000;
decimalScale[2] = 10000000;
decimalScale[3] = 1000000;
decimalScale[4] = 100000;
decimalScale[5] = 10000;
decimalScale[6] = 1000;
decimalScale[7] = 100;
decimalScale[8] = 10;
decimalScale[9] = 1;
}
if (value == 0) {
return "0"; //$NON-NLS-1$
}
// Faster algorithm for smaller Integers
if (value < 1000 && value > -1000) {
char[] buffer = new char[4];
int positive_value = value < 0 ? -value : value;
int first_digit = 0;
if (value < 0) {
buffer[0] = '-';
first_digit++;
}
int last_digit = first_digit;
int quot = positive_value;
do {
int res = quot / 10;
int digit_value = quot - ((res << 3) + (res << 1));
digit_value += '0';
buffer[last_digit++] = (char) digit_value;
quot = res;
} while (quot != 0);
int count = last_digit--;
do {
char tmp = buffer[last_digit];
buffer[last_digit--] = buffer[first_digit];
buffer[first_digit++] = tmp;
} while (first_digit < last_digit);
return new String(buffer, 0, count);
}
if (value == MIN_VALUE) {
return "-2147483648";//$NON-NLS-1$
}
char[] buffer = new char[11];
int positive_value = value < 0 ? -value : value;
byte first_digit = 0;
if (value < 0) {
buffer[0] = '-';
first_digit++;
}
byte last_digit = first_digit;
byte count;
int number;
boolean start = false;
for (int i = 0; i < 9; i++) {
count = 0;
if (positive_value < (number = decimalScale[i])) {
if (start) {
buffer[last_digit++] = '0';
}
continue;
}
if (i > 0) {
number = (decimalScale[i] << 3);
if (positive_value >= number) {
positive_value -= number;
count += 8;
}
number = (decimalScale[i] << 2);
if (positive_value >= number) {
positive_value -= number;
count += 4;
}
}
number = (decimalScale[i] << 1);
if (positive_value >= number) {
positive_value -= number;
count += 2;
}
if (positive_value >= decimalScale[i]) {
positive_value -= decimalScale[i];
count++;
}
if (count > 0 && !start) {
start = true;
}
if (start) {
buffer[last_digit++] = (char) (count + '0');
}
}
buffer[last_digit++] = (char) (positive_value + '0');
count = last_digit--;
return new String(buffer, 0, count);
}
/**
* Converts the specified integer into a string representation based on the
* specified radix. The returned string is a concatenation of a minus sign
* if the number is negative and characters from '0' to '9' and 'a' to 'z',
* depending on the radix. If {@code radix} is not in the interval defined
* by {@code Character.MIN_RADIX} and {@code Character.MAX_RADIX} then 10 is
* used as the base for the conversion.
*
* @param i
* the integer to convert.
* @param radix
* the base to use for the conversion.
* @return the string representation of {@code i}.
*/
public static String toString(int i, int radix) {
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
radix = 10;
}
if (i == 0) {
return "0"; //$NON-NLS-1$
}
int count = 2, j = i;
boolean negative = i < 0;
if (!negative) {
count = 1;
j = -i;
}
while ((i /= radix) != 0) {
count++;
}
String buffer = new String(count);
char[] bufferValue = buffer.getValue();
do {
int ch = 0 - (j % radix);
if (ch > 9) {
ch = ch - 10 + 'a';
} else {
ch += '0';
}
bufferValue[--count] = (char) ch;
} while ((j /= radix) != 0);
if (negative) {
bufferValue[0] = '-';
}
return buffer;
}
/**
* Parses the specified string as a signed decimal integer value.
*
* @param string
* the string representation of an integer value.
* @return an {@code Integer} instance containing the integer value
* represented by {@code string}.
* @throws NumberFormatException
* if {@code string} is {@code null}, has a length of zero or
* can not be parsed as an integer value.
* @see #parseInt(String)
*/
public static Integer valueOf(String string) throws NumberFormatException {
return valueOf(parseInt(string));
}
/**
* Parses the specified string as a signed integer value using the specified
* radix.
*
* @param string
* the string representation of an integer value.
* @param radix
* the radix to use when parsing.
* @return an {@code Integer} instance containing the integer value
* represented by {@code string} using {@code radix}.
* @throws NumberFormatException
* if {@code string} is {@code null} or has a length of zero,
* {@code radix < Character.MIN_RADIX},
* {@code radix > Character.MAX_RADIX}, or if {@code string}
* can not be parsed as an integer value.
* @see #parseInt(String, int)
*/
public static Integer valueOf(String string, int radix)
throws NumberFormatException {
return valueOf(parseInt(string, radix));
}
/**
* Determines the highest (leftmost) bit of the specified integer that is 1
* and returns the bit mask value for that bit. This is also referred to as
* the Most Significant 1 Bit. Returns zero if the specified integer is
* zero.
*
* @param i
* the integer to examine.
* @return the bit mask indicating the highest 1 bit in {@code i}.
* @since 1.5
*/
public static int highestOneBit(int i) {
i |= (i >> 1);
i |= (i >> 2);
i |= (i >> 4);
i |= (i >> 8);
i |= (i >> 16);
return (i & ~(i >>> 1));
}
/**
* Determines the lowest (rightmost) bit of the specified integer that is 1
* and returns the bit mask value for that bit. This is also referred
* to as the Least Significant 1 Bit. Returns zero if the specified integer
* is zero.
*
* @param i
* the integer to examine.
* @return the bit mask indicating the lowest 1 bit in {@code i}.
* @since 1.5
*/
public static int lowestOneBit(int i) {
return (i & (-i));
}
/**
* Determines the number of leading zeros in the specified integer prior to
* the {@link #highestOneBit(int) highest one bit}.
*
* @param i
* the integer to examine.
* @return the number of leading zeros in {@code i}.
* @since 1.5
*/
public static int numberOfLeadingZeros(int i) {
i |= i >> 1;
i |= i >> 2;
i |= i >> 4;
i |= i >> 8;
i |= i >> 16;
return bitCount(~i);
}
/**
* Determines the number of trailing zeros in the specified integer after
* the {@link #lowestOneBit(int) lowest one bit}.
*
* @param i
* the integer to examine.
* @return the number of trailing zeros in {@code i}.
* @since 1.5
*/
public static int numberOfTrailingZeros(int i) {
return bitCount((i & -i) - 1);
}
/**
* Counts the number of 1 bits in the specified integer; this is also
* referred to as population count.
*
* @param i
* the integer to examine.
* @return the number of 1 bits in {@code i}.
* @since 1.5
*/
public static int bitCount(int i) {
i -= ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = (((i >> 4) + i) & 0x0F0F0F0F);
i += (i >> 8);
i += (i >> 16);
return (i & 0x0000003F);
}
/**
* Rotates the bits of the specified integer to the left by the specified
* number of bits.
*
* @param i
* the integer value to rotate left.
* @param distance
* the number of bits to rotate.
* @return the rotated value.
* @since 1.5
*/
public static int rotateLeft(int i, int distance) {
if (distance == 0) {
return i;
}
/*
* According to JLS3, 15.19, the right operand of a shift is always
* implicitly masked with 0x1F, which the negation of 'distance' is
* taking advantage of.
*/
return ((i << distance) | (i >>> (-distance)));
}
/**
* Rotates the bits of the specified integer to the right by the specified
* number of bits.
*
* @param i
* the integer value to rotate right.
* @param distance
* the number of bits to rotate.
* @return the rotated value.
* @since 1.5
*/
public static int rotateRight(int i, int distance) {
if (distance == 0) {
return i;
}
/*
* According to JLS3, 15.19, the right operand of a shift is always
* implicitly masked with 0x1F, which the negation of 'distance' is
* taking advantage of.
*/
return ((i >>> distance) | (i << (-distance)));
}
/**
* Reverses the order of the bytes of the specified integer.
*
* @param i
* the integer value for which to reverse the byte order.
* @return the reversed value.
* @since 1.5
*/
public static int reverseBytes(int i) {
int b3 = i >>> 24;
int b2 = (i >>> 8) & 0xFF00;
int b1 = (i & 0xFF00) << 8;
int b0 = i << 24;
return (b0 | b1 | b2 | b3);
}
/**
* Reverses the order of the bits of the specified integer.
*
* @param i
* the integer value for which to reverse the bit order.
* @return the reversed value.
* @since 1.5
*/
public static int reverse(int i) {
// From Hacker's Delight, 7-1, Figure 7-1
i = (i & 0x55555555) << 1 | (i >> 1) & 0x55555555;
i = (i & 0x33333333) << 2 | (i >> 2) & 0x33333333;
i = (i & 0x0F0F0F0F) << 4 | (i >> 4) & 0x0F0F0F0F;
return reverseBytes(i);
}
/**
* Returns the value of the {@code signum} function for the specified
* integer.
*
* @param i
* the integer value to check.
* @return -1 if {@code i} is negative, 1 if {@code i} is positive, 0 if
* {@code i} is zero.
* @since 1.5
*/
public static int signum(int i) {
return (i == 0 ? 0 : (i < 0 ? -1 : 1));
}
/**
* Returns a {@code Integer} instance for the specified integer value.
* <p>
* If it is not necessary to get a new {@code Integer} instance, it is
* recommended to use this method instead of the constructor, since it
* maintains a cache of instances which may result in better performance.
*
* JUniversal CHANGE: Removed the valueOfCache, which cached -128 to 127, in
* order to make things a little simpler & since static initializers aren't
* currently supported.
*
* @param i
* the integer value to store in the instance.
* @return a {@code Integer} instance containing {@code i}.
* @since 1.5
*/
public static Integer valueOf(int i) {
return new Integer(i);
}
}