/* * @(#)Arrays.java 1.48 03/01/23 * * Copyright 2003 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package instrumented.java.util; import java.lang.reflect.*; /** * This class contains various methods for manipulating arrays (such as * sorting and searching). This class also contains a static factory * that allows arrays to be viewed as lists. * * <p>The methods in this class all throw a <tt>NullPointerException</tt> if * the specified array reference is null. * * <p>The documentation for the methods contained in this class includes * briefs description of the <i>implementations</i>. Such descriptions should * be regarded as <i>implementation notes</i>, rather than parts of the * <i>specification</i>. Implementors should feel free to substitute other * algorithms, so long as the specification itself is adhered to. (For * example, the algorithm used by <tt>sort(Object[])</tt> does not have to be * a mergesort, but it does have to be <i>stable</i>.) * * <p>This class is a member of the * <a href="{@docRoot}/../guide/collections/index.html"> * Java Collections Framework</a>. * * @author Josh Bloch * @version 1.48, 01/23/03 * @see Comparable * @see Comparator * @since 1.2 */ public class Arrays { // Suppresses default constructor, ensuring non-instantiability. private Arrays() { } // Sorting /** * Sorts the specified array of longs into ascending numerical order. * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. */ public static void sort(long[] a) { sort1(a, 0, a.length); } /** * Sorts the specified range of the specified array of longs into * ascending numerical order. The range to be sorted extends from index * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive. * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.) * * <p>The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. * @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void sort(long[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sort1(a, fromIndex, toIndex-fromIndex); } /** * Sorts the specified array of ints into ascending numerical order. * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. */ public static void sort(int[] a) { sort1(a, 0, a.length); } /** * Sorts the specified range of the specified array of ints into * ascending numerical order. The range to be sorted extends from index * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive. * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p> * * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. * @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void sort(int[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sort1(a, fromIndex, toIndex-fromIndex); } /** * Sorts the specified array of shorts into ascending numerical order. * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. */ public static void sort(short[] a) { sort1(a, 0, a.length); } /** * Sorts the specified range of the specified array of shorts into * ascending numerical order. The range to be sorted extends from index * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive. * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p> * * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. * @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void sort(short[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sort1(a, fromIndex, toIndex-fromIndex); } /** * Sorts the specified array of chars into ascending numerical order. * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. */ public static void sort(char[] a) { sort1(a, 0, a.length); } /** * Sorts the specified range of the specified array of chars into * ascending numerical order. The range to be sorted extends from index * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive. * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p> * * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. * @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void sort(char[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sort1(a, fromIndex, toIndex-fromIndex); } /** * Sorts the specified array of bytes into ascending numerical order. * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. */ public static void sort(byte[] a) { sort1(a, 0, a.length); } /** * Sorts the specified range of the specified array of bytes into * ascending numerical order. The range to be sorted extends from index * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive. * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p> * * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. * @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void sort(byte[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sort1(a, fromIndex, toIndex-fromIndex); } /** * Sorts the specified array of doubles into ascending numerical order. * <p> * The <code><</code> relation does not provide a total order on * all floating-point values; although they are distinct numbers * <code>-0.0 == 0.0</code> is <code>true</code> and a NaN value * compares neither less than, greater than, nor equal to any * floating-point value, even itself. To allow the sort to * proceed, instead of using the <code><</code> relation to * determine ascending numerical order, this method uses the total * order imposed by {@link Double#compareTo}. This ordering * differs from the <code><</code> relation in that * <code>-0.0</code> is treated as less than <code>0.0</code> and * NaN is considered greater than any other floating-point value. * For the purposes of sorting, all NaN values are considered * equivalent and equal. * <p> * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. */ public static void sort(double[] a) { sort2(a, 0, a.length); } /** * Sorts the specified range of the specified array of doubles into * ascending numerical order. The range to be sorted extends from index * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive. * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.) * <p> * The <code><</code> relation does not provide a total order on * all floating-point values; although they are distinct numbers * <code>-0.0 == 0.0</code> is <code>true</code> and a NaN value * compares neither less than, greater than, nor equal to any * floating-point value, even itself. To allow the sort to * proceed, instead of using the <code><</code> relation to * determine ascending numerical order, this method uses the total * order imposed by {@link Double#compareTo}. This ordering * differs from the <code><</code> relation in that * <code>-0.0</code> is treated as less than <code>0.0</code> and * NaN is considered greater than any other floating-point value. * For the purposes of sorting, all NaN values are considered * equivalent and equal. * <p> * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. * @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void sort(double[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sort2(a, fromIndex, toIndex); } /** * Sorts the specified array of floats into ascending numerical order. * <p> * The <code><</code> relation does not provide a total order on * all floating-point values; although they are distinct numbers * <code>-0.0f == 0.0f</code> is <code>true</code> and a NaN value * compares neither less than, greater than, nor equal to any * floating-point value, even itself. To allow the sort to * proceed, instead of using the <code><</code> relation to * determine ascending numerical order, this method uses the total * order imposed by {@link Float#compareTo}. This ordering * differs from the <code><</code> relation in that * <code>-0.0f</code> is treated as less than <code>0.0f</code> and * NaN is considered greater than any other floating-point value. * For the purposes of sorting, all NaN values are considered * equivalent and equal. * <p> * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. */ public static void sort(float[] a) { sort2(a, 0, a.length); } /** * Sorts the specified range of the specified array of floats into * ascending numerical order. The range to be sorted extends from index * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive. * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.) * <p> * The <code><</code> relation does not provide a total order on * all floating-point values; although they are distinct numbers * <code>-0.0f == 0.0f</code> is <code>true</code> and a NaN value * compares neither less than, greater than, nor equal to any * floating-point value, even itself. To allow the sort to * proceed, instead of using the <code><</code> relation to * determine ascending numerical order, this method uses the total * order imposed by {@link Float#compareTo}. This ordering * differs from the <code><</code> relation in that * <code>-0.0f</code> is treated as less than <code>0.0f</code> and * NaN is considered greater than any other floating-point value. * For the purposes of sorting, all NaN values are considered * equivalent and equal. * <p> * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. * @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void sort(float[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sort2(a, fromIndex, toIndex); } private static void sort2(double a[], int fromIndex, int toIndex) { final long NEG_ZERO_BITS = Double.doubleToLongBits(-0.0d); /* * The sort is done in three phases to avoid the expense of using * NaN and -0.0 aware comparisons during the main sort. */ /* * Preprocessing phase: Move any NaN's to end of array, count the * number of -0.0's, and turn them into 0.0's. */ int numNegZeros = 0; int i = fromIndex, n = toIndex; while(i < n) { if (a[i] != a[i]) { double swap = a[i]; a[i] = a[--n]; a[n] = swap; } else { if (a[i]==0 && Double.doubleToLongBits(a[i])==NEG_ZERO_BITS) { a[i] = 0.0d; numNegZeros++; } i++; } } // Main sort phase: quicksort everything but the NaN's sort1(a, fromIndex, n-fromIndex); // Postprocessing phase: change 0.0's to -0.0's as required if (numNegZeros != 0) { int j = binarySearch(a, 0.0d, fromIndex, n-1); // posn of ANY zero do { j--; } while (j>=0 && a[j]==0.0d); // j is now one less than the index of the FIRST zero for (int k=0; k<numNegZeros; k++) a[++j] = -0.0d; } } private static void sort2(float a[], int fromIndex, int toIndex) { final int NEG_ZERO_BITS = Float.floatToIntBits(-0.0f); /* * The sort is done in three phases to avoid the expense of using * NaN and -0.0 aware comparisons during the main sort. */ /* * Preprocessing phase: Move any NaN's to end of array, count the * number of -0.0's, and turn them into 0.0's. */ int numNegZeros = 0; int i = fromIndex, n = toIndex; while(i < n) { if (a[i] != a[i]) { float swap = a[i]; a[i] = a[--n]; a[n] = swap; } else { if (a[i]==0 && Float.floatToIntBits(a[i])==NEG_ZERO_BITS) { a[i] = 0.0f; numNegZeros++; } i++; } } // Main sort phase: quicksort everything but the NaN's sort1(a, fromIndex, n-fromIndex); // Postprocessing phase: change 0.0's to -0.0's as required if (numNegZeros != 0) { int j = binarySearch(a, 0.0f, fromIndex, n-1); // posn of ANY zero do { j--; } while (j>=0 && a[j]==0.0f); // j is now one less than the index of the FIRST zero for (int k=0; k<numNegZeros; k++) a[++j] = -0.0f; } } /* * The code for each of the seven primitive types is largely identical. * C'est la vie. */ /** * Sorts the specified sub-array of longs into ascending order. */ private static void sort1(long x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } long v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(long x[], int a, int b) { long t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(long x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed longs. */ private static int med3(long x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified sub-array of integers into ascending order. */ private static void sort1(int x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } int v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(int x[], int a, int b) { int t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(int x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed integers. */ private static int med3(int x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified sub-array of shorts into ascending order. */ private static void sort1(short x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } short v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(short x[], int a, int b) { short t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(short x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed shorts. */ private static int med3(short x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified sub-array of chars into ascending order. */ private static void sort1(char x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } char v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(char x[], int a, int b) { char t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(char x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed chars. */ private static int med3(char x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified sub-array of bytes into ascending order. */ private static void sort1(byte x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } byte v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(byte x[], int a, int b) { byte t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(byte x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed bytes. */ private static int med3(byte x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified sub-array of doubles into ascending order. */ private static void sort1(double x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } double v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(double x[], int a, int b) { double t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(double x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed doubles. */ private static int med3(double x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified sub-array of floats into ascending order. */ private static void sort1(float x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } float v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(float x[], int a, int b) { float t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(float x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed floats. */ private static int med3(float x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified array of objects into ascending order, according to * the <i>natural ordering</i> of its elements. All elements in the array * must implement the <tt>Comparable</tt> interface. Furthermore, all * elements in the array must be <i>mutually comparable</i> (that is, * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt> * for any elements <tt>e1</tt> and <tt>e2</tt> in the array).<p> * * This sort is guaranteed to be <i>stable</i>: equal elements will * not be reordered as a result of the sort.<p> * * The sorting algorithm is a modified mergesort (in which the merge is * omitted if the highest element in the low sublist is less than the * lowest element in the high sublist). This algorithm offers guaranteed * n*log(n) performance. * * @param a the array to be sorted. * @throws ClassCastException if the array contains elements that are not * <i>mutually comparable</i> (for example, strings and integers). * @see Comparable */ public static void sort(Object[] a) { Object aux[] = (Object[])a.clone(); mergeSort(aux, a, 0, a.length, 0); } /** * Sorts the specified range of the specified array of objects into * ascending order, according to the <i>natural ordering</i> of its * elements. The range to be sorted extends from index * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive. * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.) All * elements in this range must implement the <tt>Comparable</tt> * interface. Furthermore, all elements in this range must be <i>mutually * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and * <tt>e2</tt> in the array).<p> * * This sort is guaranteed to be <i>stable</i>: equal elements will * not be reordered as a result of the sort.<p> * * The sorting algorithm is a modified mergesort (in which the merge is * omitted if the highest element in the low sublist is less than the * lowest element in the high sublist). This algorithm offers guaranteed * n*log(n) performance. * * @param a the array to be sorted. * @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> * @throws ClassCastException if the array contains elements that are * not <i>mutually comparable</i> (for example, strings and * integers). * @see Comparable */ public static void sort(Object[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); Object aux[] = (Object[])cloneSubarray(a, fromIndex, toIndex); mergeSort(aux, a, fromIndex, toIndex, -fromIndex); } /** * Tuning parameter: list size at or below which insertion sort will be * used in preference to mergesort or quicksort. */ private static final int INSERTIONSORT_THRESHOLD = 7; /** * Clones an array within the specified bounds. * This method assumes that a is an array. */ private static Object cloneSubarray(Object[] a, int from, int to) { int n = to - from; Object result = Array.newInstance(a.getClass().getComponentType(), n); System.arraycopy(a, from, result, 0, n); return result; } /** * Src is the source array that starts at index 0 * Dest is the (possibly larger) array destination with a possible offset * low is the index in dest to start sorting * high is the end index in dest to end sorting * off is the offset to generate corresponding low, high in src */ private static void mergeSort(Object src[], Object dest[], int low, int high, int off) { int length = high - low; // Insertion sort on smallest arrays if (length < INSERTIONSORT_THRESHOLD) { for (int i=low; i<high; i++) for (int j=i; j>low && ((Comparable)dest[j-1]).compareTo((Comparable)dest[j])>0; j--) swap(dest, j, j-1); return; } // Recursively sort halves of dest into src int destLow = low; int destHigh = high; low += off; high += off; int mid = (low + high) >> 1; mergeSort(dest, src, low, mid, -off); mergeSort(dest, src, mid, high, -off); // If list is already sorted, just copy from src to dest. This is an // optimization that results in faster sorts for nearly ordered lists. if (((Comparable)src[mid-1]).compareTo((Comparable)src[mid]) <= 0) { System.arraycopy(src, low, dest, destLow, length); return; } // Merge sorted halves (now in src) into dest for(int i = destLow, p = low, q = mid; i < destHigh; i++) { if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0) dest[i] = src[p++]; else dest[i] = src[q++]; } } /** * Swaps x[a] with x[b]. */ private static void swap(Object x[], int a, int b) { Object t = x[a]; x[a] = x[b]; x[b] = t; } /** * Sorts the specified array of objects according to the order induced by * the specified comparator. All elements in the array must be * <i>mutually comparable</i> by the specified comparator (that is, * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt> * for any elements <tt>e1</tt> and <tt>e2</tt> in the array).<p> * * This sort is guaranteed to be <i>stable</i>: equal elements will * not be reordered as a result of the sort.<p> * * The sorting algorithm is a modified mergesort (in which the merge is * omitted if the highest element in the low sublist is less than the * lowest element in the high sublist). This algorithm offers guaranteed * n*log(n) performance. * * @param a the array to be sorted. * @param c the comparator to determine the order of the array. A * <tt>null</tt> value indicates that the elements' <i>natural * ordering</i> should be used. * @throws ClassCastException if the array contains elements that are * not <i>mutually comparable</i> using the specified comparator. * @see Comparator */ public static void sort(Object[] a, Comparator c) { Object aux[] = (Object[])a.clone(); if (c==null) mergeSort(aux, a, 0, a.length, 0); else mergeSort(aux, a, 0, a.length, 0, c); } /** * Sorts the specified range of the specified array of objects according * to the order induced by the specified comparator. The range to be * sorted extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be sorted is empty.) All elements in the range must be * <i>mutually comparable</i> by the specified comparator (that is, * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt> * for any elements <tt>e1</tt> and <tt>e2</tt> in the range).<p> * * This sort is guaranteed to be <i>stable</i>: equal elements will * not be reordered as a result of the sort.<p> * * The sorting algorithm is a modified mergesort (in which the merge is * omitted if the highest element in the low sublist is less than the * lowest element in the high sublist). This algorithm offers guaranteed * n*log(n) performance. * * @param a the array to be sorted. * @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @param c the comparator to determine the order of the array. A * <tt>null</tt> value indicates that the elements' <i>natural * ordering</i> should be used. * @throws ClassCastException if the array contains elements that are not * <i>mutually comparable</i> using the specified comparator. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> * @see Comparator */ public static void sort(Object[] a, int fromIndex, int toIndex, Comparator c) { rangeCheck(a.length, fromIndex, toIndex); Object aux[] = (Object[])cloneSubarray(a, fromIndex, toIndex); if (c==null) mergeSort(aux, a, fromIndex, toIndex, -fromIndex); else mergeSort(aux, a, fromIndex, toIndex, -fromIndex, c); } /** * Src is the source array that starts at index 0 * Dest is the (possibly larger) array destination with a possible offset * low is the index in dest to start sorting * high is the end index in dest to end sorting * off is the offset into src corresponding to low in dest */ private static void mergeSort(Object src[], Object dest[], int low, int high, int off, Comparator c) { int length = high - low; // Insertion sort on smallest arrays if (length < INSERTIONSORT_THRESHOLD) { for (int i=low; i<high; i++) for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--) swap(dest, j, j-1); return; } // Recursively sort halves of dest into src int destLow = low; int destHigh = high; low += off; high += off; int mid = (low + high) >> 1; mergeSort(dest, src, low, mid, -off, c); mergeSort(dest, src, mid, high, -off, c); // If list is already sorted, just copy from src to dest. This is an // optimization that results in faster sorts for nearly ordered lists. if (c.compare(src[mid-1], src[mid]) <= 0) { System.arraycopy(src, low, dest, destLow, length); return; } // Merge sorted halves (now in src) into dest for(int i = destLow, p = low, q = mid; i < destHigh; i++) { if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0) dest[i] = src[p++]; else dest[i] = src[q++]; } } /** * Check that fromIndex and toIndex are in range, and throw an * appropriate exception if they aren't. */ private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) { if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex+")"); if (fromIndex < 0) throw new ArrayIndexOutOfBoundsException(fromIndex); if (toIndex > arrayLen) throw new ArrayIndexOutOfBoundsException(toIndex); } // Searching /** * Searches the specified array of longs for the specified value using the * binary search algorithm. The array <strong>must</strong> be sorted (as * by the <tt>sort</tt> method, above) prior to making this call. If it * is not sorted, the results are undefined. If the array contains * multiple elements with the specified value, there is no guarantee which * one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see #sort(long[]) */ public static int binarySearch(long[] a, long key) { int low = 0; int high = a.length-1; while (low <= high) { int mid = (low + high) >> 1; long midVal = a[mid]; if (midVal < key) low = mid + 1; else if (midVal > key) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } /** * Searches the specified array of ints for the specified value using the * binary search algorithm. The array <strong>must</strong> be sorted (as * by the <tt>sort</tt> method, above) prior to making this call. If it * is not sorted, the results are undefined. If the array contains * multiple elements with the specified value, there is no guarantee which * one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see #sort(int[]) */ public static int binarySearch(int[] a, int key) { int low = 0; int high = a.length-1; while (low <= high) { int mid = (low + high) >> 1; int midVal = a[mid]; if (midVal < key) low = mid + 1; else if (midVal > key) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } /** * Searches the specified array of shorts for the specified value using * the binary search algorithm. The array <strong>must</strong> be sorted * (as by the <tt>sort</tt> method, above) prior to making this call. If * it is not sorted, the results are undefined. If the array contains * multiple elements with the specified value, there is no guarantee which * one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see #sort(short[]) */ public static int binarySearch(short[] a, short key) { int low = 0; int high = a.length-1; while (low <= high) { int mid = (low + high) >> 1; short midVal = a[mid]; if (midVal < key) low = mid + 1; else if (midVal > key) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } /** * Searches the specified array of chars for the specified value using the * binary search algorithm. The array <strong>must</strong> be sorted (as * by the <tt>sort</tt> method, above) prior to making this call. If it * is not sorted, the results are undefined. If the array contains * multiple elements with the specified value, there is no guarantee which * one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see #sort(char[]) */ public static int binarySearch(char[] a, char key) { int low = 0; int high = a.length-1; while (low <= high) { int mid = (low + high) >> 1; char midVal = a[mid]; if (midVal < key) low = mid + 1; else if (midVal > key) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } /** * Searches the specified array of bytes for the specified value using the * binary search algorithm. The array <strong>must</strong> be sorted (as * by the <tt>sort</tt> method, above) prior to making this call. If it * is not sorted, the results are undefined. If the array contains * multiple elements with the specified value, there is no guarantee which * one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see #sort(byte[]) */ public static int binarySearch(byte[] a, byte key) { int low = 0; int high = a.length-1; while (low <= high) { int mid = (low + high) >> 1; byte midVal = a[mid]; if (midVal < key) low = mid + 1; else if (midVal > key) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } /** * Searches the specified array of doubles for the specified value using * the binary search algorithm. The array <strong>must</strong> be sorted * (as by the <tt>sort</tt> method, above) prior to making this call. If * it is not sorted, the results are undefined. If the array contains * multiple elements with the specified value, there is no guarantee which * one will be found. This method considers all NaN values to be * equivalent and equal. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see #sort(double[]) */ public static int binarySearch(double[] a, double key) { return binarySearch(a, key, 0, a.length-1); } private static int binarySearch(double[] a, double key, int low,int high) { while (low <= high) { int mid = (low + high) >> 1; double midVal = a[mid]; int cmp; if (midVal < key) { cmp = -1; // Neither val is NaN, thisVal is smaller } else if (midVal > key) { cmp = 1; // Neither val is NaN, thisVal is larger } else { long midBits = Double.doubleToLongBits(midVal); long keyBits = Double.doubleToLongBits(key); cmp = (midBits == keyBits ? 0 : // Values are equal (midBits < keyBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) 1)); // (0.0, -0.0) or (NaN, !NaN) } if (cmp < 0) low = mid + 1; else if (cmp > 0) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } /** * Searches the specified array of floats for the specified value using * the binary search algorithm. The array <strong>must</strong> be sorted * (as by the <tt>sort</tt> method, above) prior to making this call. If * it is not sorted, the results are undefined. If the array contains * multiple elements with the specified value, there is no guarantee which * one will be found. This method considers all NaN values to be * equivalent and equal. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see #sort(float[]) */ public static int binarySearch(float[] a, float key) { return binarySearch(a, key, 0, a.length-1); } private static int binarySearch(float[] a, float key, int low,int high) { while (low <= high) { int mid = (low + high) >> 1; float midVal = a[mid]; int cmp; if (midVal < key) { cmp = -1; // Neither val is NaN, thisVal is smaller } else if (midVal > key) { cmp = 1; // Neither val is NaN, thisVal is larger } else { int midBits = Float.floatToIntBits(midVal); int keyBits = Float.floatToIntBits(key); cmp = (midBits == keyBits ? 0 : // Values are equal (midBits < keyBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) 1)); // (0.0, -0.0) or (NaN, !NaN) } if (cmp < 0) low = mid + 1; else if (cmp > 0) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } /** * Searches the specified array for the specified object using the binary * search algorithm. The array must be sorted into ascending order * according to the <i>natural ordering</i> of its elements (as by * <tt>Sort(Object[]</tt>), above) prior to making this call. If it is * not sorted, the results are undefined. * (If the array contains elements that are not mutually comparable (for * example,strings and integers), it <i>cannot</i> be sorted according * to the natural order of its elements, hence results are undefined.) * If the array contains multiple * elements equal to the specified object, there is no guarantee which * one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @throws ClassCastException if the search key in not comparable to the * elements of the array. * @see Comparable * @see #sort(Object[]) */ public static int binarySearch(Object[] a, Object key) { int low = 0; int high = a.length-1; while (low <= high) { int mid = (low + high) >> 1; Object midVal = a[mid]; int cmp = ((Comparable)midVal).compareTo(key); if (cmp < 0) low = mid + 1; else if (cmp > 0) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } /** * Searches the specified array for the specified object using the binary * search algorithm. The array must be sorted into ascending order * according to the specified comparator (as by the <tt>Sort(Object[], * Comparator)</tt> method, above), prior to making this call. If it is * not sorted, the results are undefined. * If the array contains multiple * elements equal to the specified object, there is no guarantee which one * will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @param c the comparator by which the array is ordered. A * <tt>null</tt> value indicates that the elements' <i>natural * ordering</i> should be used. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @throws ClassCastException if the array contains elements that are not * <i>mutually comparable</i> using the specified comparator, * or the search key in not mutually comparable with the * elements of the array using this comparator. * @see Comparable * @see #sort(Object[], Comparator) */ public static int binarySearch(Object[] a, Object key, Comparator c) { if (c==null) return binarySearch(a, key); int low = 0; int high = a.length-1; while (low <= high) { int mid = (low + high) >> 1; Object midVal = a[mid]; int cmp = c.compare(midVal, key); if (cmp < 0) low = mid + 1; else if (cmp > 0) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } // Equality Testing /** * Returns <tt>true</tt> if the two specified arrays of longs are * <i>equal</i> to one another. Two arrays are considered equal if both * arrays contain the same number of elements, and all corresponding pairs * of elements in the two arrays are equal. In other words, two arrays * are equal if they contain the same elements in the same order. Also, * two array references are considered equal if both are <tt>null</tt>.<p> * * @param a one array to be tested for equality. * @param a2 the other array to be tested for equality. * @return <tt>true</tt> if the two arrays are equal. */ public static boolean equals(long[] a, long[] a2) { if (a==a2) return true; if (a==null || a2==null) return false; int length = a.length; if (a2.length != length) return false; for (int i=0; i<length; i++) if (a[i] != a2[i]) return false; return true; } /** * Returns <tt>true</tt> if the two specified arrays of ints are * <i>equal</i> to one another. Two arrays are considered equal if both * arrays contain the same number of elements, and all corresponding pairs * of elements in the two arrays are equal. In other words, two arrays * are equal if they contain the same elements in the same order. Also, * two array references are considered equal if both are <tt>null</tt>.<p> * * @param a one array to be tested for equality. * @param a2 the other array to be tested for equality. * @return <tt>true</tt> if the two arrays are equal. */ public static boolean equals(int[] a, int[] a2) { if (a==a2) return true; if (a==null || a2==null) return false; int length = a.length; if (a2.length != length) return false; for (int i=0; i<length; i++) if (a[i] != a2[i]) return false; return true; } /** * Returns <tt>true</tt> if the two specified arrays of shorts are * <i>equal</i> to one another. Two arrays are considered equal if both * arrays contain the same number of elements, and all corresponding pairs * of elements in the two arrays are equal. In other words, two arrays * are equal if they contain the same elements in the same order. Also, * two array references are considered equal if both are <tt>null</tt>.<p> * * @param a one array to be tested for equality. * @param a2 the other array to be tested for equality. * @return <tt>true</tt> if the two arrays are equal. */ public static boolean equals(short[] a, short a2[]) { if (a==a2) return true; if (a==null || a2==null) return false; int length = a.length; if (a2.length != length) return false; for (int i=0; i<length; i++) if (a[i] != a2[i]) return false; return true; } /** * Returns <tt>true</tt> if the two specified arrays of chars are * <i>equal</i> to one another. Two arrays are considered equal if both * arrays contain the same number of elements, and all corresponding pairs * of elements in the two arrays are equal. In other words, two arrays * are equal if they contain the same elements in the same order. Also, * two array references are considered equal if both are <tt>null</tt>.<p> * * @param a one array to be tested for equality. * @param a2 the other array to be tested for equality. * @return <tt>true</tt> if the two arrays are equal. */ public static boolean equals(char[] a, char[] a2) { if (a==a2) return true; if (a==null || a2==null) return false; int length = a.length; if (a2.length != length) return false; for (int i=0; i<length; i++) if (a[i] != a2[i]) return false; return true; } /** * Returns <tt>true</tt> if the two specified arrays of bytes are * <i>equal</i> to one another. Two arrays are considered equal if both * arrays contain the same number of elements, and all corresponding pairs * of elements in the two arrays are equal. In other words, two arrays * are equal if they contain the same elements in the same order. Also, * two array references are considered equal if both are <tt>null</tt>.<p> * * @param a one array to be tested for equality. * @param a2 the other array to be tested for equality. * @return <tt>true</tt> if the two arrays are equal. */ public static boolean equals(byte[] a, byte[] a2) { if (a==a2) return true; if (a==null || a2==null) return false; int length = a.length; if (a2.length != length) return false; for (int i=0; i<length; i++) if (a[i] != a2[i]) return false; return true; } /** * Returns <tt>true</tt> if the two specified arrays of booleans are * <i>equal</i> to one another. Two arrays are considered equal if both * arrays contain the same number of elements, and all corresponding pairs * of elements in the two arrays are equal. In other words, two arrays * are equal if they contain the same elements in the same order. Also, * two array references are considered equal if both are <tt>null</tt>.<p> * * @param a one array to be tested for equality. * @param a2 the other array to be tested for equality. * @return <tt>true</tt> if the two arrays are equal. */ public static boolean equals(boolean[] a, boolean[] a2) { if (a==a2) return true; if (a==null || a2==null) return false; int length = a.length; if (a2.length != length) return false; for (int i=0; i<length; i++) if (a[i] != a2[i]) return false; return true; } /** * Returns <tt>true</tt> if the two specified arrays of doubles are * <i>equal</i> to one another. Two arrays are considered equal if both * arrays contain the same number of elements, and all corresponding pairs * of elements in the two arrays are equal. In other words, two arrays * are equal if they contain the same elements in the same order. Also, * two array references are considered equal if both are <tt>null</tt>.<p> * * Two doubles <tt>d1</tt> and <tt>d2</tt> are considered equal if: * <pre> <tt>new Double(d1).equals(new Double(d2))</tt></pre> * (Unlike the <tt>==</tt> operator, this method considers * <tt>NaN</tt> equals to itself, and 0.0d unequal to -0.0d.) * * @param a one array to be tested for equality. * @param a2 the other array to be tested for equality. * @return <tt>true</tt> if the two arrays are equal. * @see Double#equals(Object) */ public static boolean equals(double[] a, double[] a2) { if (a==a2) return true; if (a==null || a2==null) return false; int length = a.length; if (a2.length != length) return false; for (int i=0; i<length; i++) if (Double.doubleToLongBits(a[i])!=Double.doubleToLongBits(a2[i])) return false; return true; } /** * Returns <tt>true</tt> if the two specified arrays of floats are * <i>equal</i> to one another. Two arrays are considered equal if both * arrays contain the same number of elements, and all corresponding pairs * of elements in the two arrays are equal. In other words, two arrays * are equal if they contain the same elements in the same order. Also, * two array references are considered equal if both are <tt>null</tt>.<p> * * Two floats <tt>f1</tt> and <tt>f2</tt> are considered equal if: * <pre> <tt>new Float(f1).equals(new Float(f2))</tt></pre> * (Unlike the <tt>==</tt> operator, this method considers * <tt>NaN</tt> equals to itself, and 0.0f unequal to -0.0f.) * * @param a one array to be tested for equality. * @param a2 the other array to be tested for equality. * @return <tt>true</tt> if the two arrays are equal. * @see Float#equals(Object) */ public static boolean equals(float[] a, float[] a2) { if (a==a2) return true; if (a==null || a2==null) return false; int length = a.length; if (a2.length != length) return false; for (int i=0; i<length; i++) if (Float.floatToIntBits(a[i])!=Float.floatToIntBits(a2[i])) return false; return true; } /** * Returns <tt>true</tt> if the two specified arrays of Objects are * <i>equal</i> to one another. The two arrays are considered equal if * both arrays contain the same number of elements, and all corresponding * pairs of elements in the two arrays are equal. Two objects <tt>e1</tt> * and <tt>e2</tt> are considered <i>equal</i> if <tt>(e1==null ? e2==null * : e1.equals(e2))</tt>. In other words, the two arrays are equal if * they contain the same elements in the same order. Also, two array * references are considered equal if both are <tt>null</tt>.<p> * * @param a one array to be tested for equality. * @param a2 the other array to be tested for equality. * @return <tt>true</tt> if the two arrays are equal. */ public static boolean equals(Object[] a, Object[] a2) { if (a==a2) return true; if (a==null || a2==null) return false; int length = a.length; if (a2.length != length) return false; for (int i=0; i<length; i++) { Object o1 = a[i]; Object o2 = a2[i]; if (!(o1==null ? o2==null : o1.equals(o2))) return false; } return true; } // Filling /** * Assigns the specified long value to each element of the specified array * of longs. * * @param a the array to be filled. * @param val the value to be stored in all elements of the array. */ public static void fill(long[] a, long val) { fill(a, 0, a.length, val); } /** * Assigns the specified long value to each element of the specified * range of the specified array of longs. The range to be filled * extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be filled is empty.) * * @param a the array to be filled. * @param fromIndex the index of the first element (inclusive) to be * filled with the specified value. * @param toIndex the index of the last element (exclusive) to be * filled with the specified value. * @param val the value to be stored in all elements of the array. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void fill(long[] a, int fromIndex, int toIndex, long val) { rangeCheck(a.length, fromIndex, toIndex); for (int i=fromIndex; i<toIndex; i++) a[i] = val; } /** * Assigns the specified int value to each element of the specified array * of ints. * * @param a the array to be filled. * @param val the value to be stored in all elements of the array. */ public static void fill(int[] a, int val) { fill(a, 0, a.length, val); } /** * Assigns the specified int value to each element of the specified * range of the specified array of ints. The range to be filled * extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be filled is empty.) * * @param a the array to be filled. * @param fromIndex the index of the first element (inclusive) to be * filled with the specified value. * @param toIndex the index of the last element (exclusive) to be * filled with the specified value. * @param val the value to be stored in all elements of the array. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void fill(int[] a, int fromIndex, int toIndex, int val) { rangeCheck(a.length, fromIndex, toIndex); for (int i=fromIndex; i<toIndex; i++) a[i] = val; } /** * Assigns the specified short value to each element of the specified array * of shorts. * * @param a the array to be filled. * @param val the value to be stored in all elements of the array. */ public static void fill(short[] a, short val) { fill(a, 0, a.length, val); } /** * Assigns the specified short value to each element of the specified * range of the specified array of shorts. The range to be filled * extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be filled is empty.) * * @param a the array to be filled. * @param fromIndex the index of the first element (inclusive) to be * filled with the specified value. * @param toIndex the index of the last element (exclusive) to be * filled with the specified value. * @param val the value to be stored in all elements of the array. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void fill(short[] a, int fromIndex, int toIndex, short val) { rangeCheck(a.length, fromIndex, toIndex); for (int i=fromIndex; i<toIndex; i++) a[i] = val; } /** * Assigns the specified char value to each element of the specified array * of chars. * * @param a the array to be filled. * @param val the value to be stored in all elements of the array. */ public static void fill(char[] a, char val) { fill(a, 0, a.length, val); } /** * Assigns the specified char value to each element of the specified * range of the specified array of chars. The range to be filled * extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be filled is empty.) * * @param a the array to be filled. * @param fromIndex the index of the first element (inclusive) to be * filled with the specified value. * @param toIndex the index of the last element (exclusive) to be * filled with the specified value. * @param val the value to be stored in all elements of the array. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void fill(char[] a, int fromIndex, int toIndex, char val) { rangeCheck(a.length, fromIndex, toIndex); for (int i=fromIndex; i<toIndex; i++) a[i] = val; } /** * Assigns the specified byte value to each element of the specified array * of bytes. * * @param a the array to be filled. * @param val the value to be stored in all elements of the array. */ public static void fill(byte[] a, byte val) { fill(a, 0, a.length, val); } /** * Assigns the specified byte value to each element of the specified * range of the specified array of bytes. The range to be filled * extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be filled is empty.) * * @param a the array to be filled. * @param fromIndex the index of the first element (inclusive) to be * filled with the specified value. * @param toIndex the index of the last element (exclusive) to be * filled with the specified value. * @param val the value to be stored in all elements of the array. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void fill(byte[] a, int fromIndex, int toIndex, byte val) { rangeCheck(a.length, fromIndex, toIndex); for (int i=fromIndex; i<toIndex; i++) a[i] = val; } /** * Assigns the specified boolean value to each element of the specified * array of booleans. * * @param a the array to be filled. * @param val the value to be stored in all elements of the array. */ public static void fill(boolean[] a, boolean val) { fill(a, 0, a.length, val); } /** * Assigns the specified boolean value to each element of the specified * range of the specified array of booleans. The range to be filled * extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be filled is empty.) * * @param a the array to be filled. * @param fromIndex the index of the first element (inclusive) to be * filled with the specified value. * @param toIndex the index of the last element (exclusive) to be * filled with the specified value. * @param val the value to be stored in all elements of the array. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val) { rangeCheck(a.length, fromIndex, toIndex); for (int i=fromIndex; i<toIndex; i++) a[i] = val; } /** * Assigns the specified double value to each element of the specified * array of doubles. * * @param a the array to be filled. * @param val the value to be stored in all elements of the array. */ public static void fill(double[] a, double val) { fill(a, 0, a.length, val); } /** * Assigns the specified double value to each element of the specified * range of the specified array of doubles. The range to be filled * extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be filled is empty.) * * @param a the array to be filled. * @param fromIndex the index of the first element (inclusive) to be * filled with the specified value. * @param toIndex the index of the last element (exclusive) to be * filled with the specified value. * @param val the value to be stored in all elements of the array. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void fill(double[] a, int fromIndex, int toIndex,double val){ rangeCheck(a.length, fromIndex, toIndex); for (int i=fromIndex; i<toIndex; i++) a[i] = val; } /** * Assigns the specified float value to each element of the specified array * of floats. * * @param a the array to be filled. * @param val the value to be stored in all elements of the array. */ public static void fill(float[] a, float val) { fill(a, 0, a.length, val); } /** * Assigns the specified float value to each element of the specified * range of the specified array of floats. The range to be filled * extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be filled is empty.) * * @param a the array to be filled. * @param fromIndex the index of the first element (inclusive) to be * filled with the specified value. * @param toIndex the index of the last element (exclusive) to be * filled with the specified value. * @param val the value to be stored in all elements of the array. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void fill(float[] a, int fromIndex, int toIndex, float val) { rangeCheck(a.length, fromIndex, toIndex); for (int i=fromIndex; i<toIndex; i++) a[i] = val; } /** * Assigns the specified Object reference to each element of the specified * array of Objects. * * @param a the array to be filled. * @param val the value to be stored in all elements of the array. */ public static void fill(Object[] a, Object val) { fill(a, 0, a.length, val); } /** * Assigns the specified Object reference to each element of the specified * range of the specified array of Objects. The range to be filled * extends from index <tt>fromIndex</tt>, inclusive, to index * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the * range to be filled is empty.) * * @param a the array to be filled. * @param fromIndex the index of the first element (inclusive) to be * filled with the specified value. * @param toIndex the index of the last element (exclusive) to be * filled with the specified value. * @param val the value to be stored in all elements of the array. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void fill(Object[] a, int fromIndex, int toIndex,Object val){ rangeCheck(a.length, fromIndex, toIndex); for (int i=fromIndex; i<toIndex; i++) a[i] = val; } // Misc /** * Returns a fixed-size list backed by the specified array. (Changes to * the returned list "write through" to the array.) This method acts * as bridge between array-based and collection-based APIs, in * combination with <tt>Collection.toArray</tt>. The returned list is * serializable and implements {@link RandomAccess}. * * @param a the array by which the list will be backed. * @return a list view of the specified array. * @see Collection#toArray() */ public static List asList(Object[] a) { return new ArrayList(a); } /** * @serial include */ private static class ArrayList extends AbstractList implements RandomAccess, java.io.Serializable { private static final long serialVersionUID = -2764017481108945198L; private Object[] a; ArrayList(Object[] array) { if (array==null) throw new NullPointerException(); a = array; } public int size() { return a.length; } public Object[] toArray() { return (Object[]) a.clone(); } public Object get(int index) { return a[index]; } public Object set(int index, Object element) { Object oldValue = a[index]; a[index] = element; return oldValue; } public int indexOf(Object o) { if (o==null) { for (int i=0; i<a.length; i++) if (a[i]==null) return i; } else { for (int i=0; i<a.length; i++) if (o.equals(a[i])) return i; } return -1; } public boolean contains(Object o) { return indexOf(o) != -1; } } }