/******************************************************************************* * Copyright (c) 2005, 2010, 2012 IBM Corporation, Gerhardt Informatics Kft. and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * IBM Corporation - initial API and implementation * Alexander Shatalin (Borland) - Contribution for Bug 238874 * Gerhardt Informatics Kft. - GEFGWT port *******************************************************************************/ package org.eclipse.draw2d.geometry; /** * A Utilities class for geometry operations. * * @author Pratik Shah * @author Alexander Nyssen * @since 3.1 */ public class Geometry { /** * Determines whether the two line segments p1->p2 and p3->p4, given by * p1=(x1, y1), p2=(x2,y2), p3=(x3,y3), p4=(x4,y4) intersect. Two line * segments are regarded to be intersecting in case they share at least one * common point, i.e if one of the two line segments starts or ends on the * other line segment or the line segments are collinear and overlapping, * then they are as well considered to be intersecting. * * @param x1 * x coordinate of starting point of line segment 1 * @param y1 * y coordinate of starting point of line segment 1 * @param x2 * x coordinate of ending point of line segment 1 * @param y2 * y coordinate of ending point of line segment 1 * @param x3 * x coordinate of the starting point of line segment 2 * @param y3 * y coordinate of the starting point of line segment 2 * @param x4 * x coordinate of the ending point of line segment 2 * @param y4 * y coordinate of the ending point of line segment 2 * * @return <code>true</code> if the two line segments formed by the given * coordinates share at least one common point. * * @since 3.1 */ public static boolean linesIntersect(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4) { // calculate bounding box of segment p1->p2 int bb1_x = Math.min(x1, x2); int bb1_y = Math.min(y1, y2); int bb2_x = Math.max(x1, x2); int bb2_y = Math.max(y1, y2); // calculate bounding box of segment p3->p4 int bb3_x = Math.min(x3, x4); int bb3_y = Math.min(y3, y4); int bb4_x = Math.max(x3, x4); int bb4_y = Math.max(y3, y4); // check if bounding boxes intersect if (!(bb2_x >= bb3_x && bb4_x >= bb1_x && bb2_y >= bb3_y && bb4_y >= bb1_y)) { // if bounding boxes do not intersect, line segments cannot // intersect either return false; } // If p3->p4 is inside the triangle p1-p2-p3, then check whether the // line p1->p2 crosses the line p3->p4. long p1p3_x = (long) x1 - x3; long p1p3_y = (long) y1 - y3; long p2p3_x = (long) x2 - x3; long p2p3_y = (long) y2 - y3; long p3p4_x = (long) x3 - x4; long p3p4_y = (long) y3 - y4; if (productSign(crossProduct(p2p3_x, p2p3_y, p3p4_x, p3p4_y), crossProduct(p3p4_x, p3p4_y, p1p3_x, p1p3_y)) >= 0) { long p2p1_x = (long) x2 - x1; long p2p1_y = (long) y2 - y1; long p1p4_x = (long) x1 - x4; long p1p4_y = (long) y1 - y4; return productSign(crossProduct(-p1p3_x, -p1p3_y, p2p1_x, p2p1_y), crossProduct(p2p1_x, p2p1_y, p1p4_x, p1p4_y)) <= 0; } return false; } private static int productSign(long x, long y) { if (x == 0 || y == 0) { return 0; } else if (x < 0 ^ y < 0) { return -1; } return 1; } private static long crossProduct(long x1, long y1, long x2, long y2) { return x1 * y2 - x2 * y1; } /** * @see PointList#polylineContainsPoint(int, int, int) * @since 3.5 */ public static boolean polylineContainsPoint(PointList points, int x, int y, int tolerance) { int coordinates[] = points.toIntArray(); /* * For each segment of PolyLine calling isSegmentPoint */ for (int index = 0; index < coordinates.length - 3; index += 2) { if (segmentContainsPoint(coordinates[index], coordinates[index + 1], coordinates[index + 2], coordinates[index + 3], x, y, tolerance)) { return true; } } return false; } /** * @return true if the least distance between point (px,py) and segment * (x1,y1) - (x2,y2) is less then specified tolerance */ private static boolean segmentContainsPoint(int x1, int y1, int x2, int y2, int px, int py, int tolerance) { /* * Point should be located inside Rectangle(x1 -+ tolerance, y1 -+ * tolerance, x2 +- tolerance, y2 +- tolerance) */ Rectangle lineBounds = Rectangle.SINGLETON; lineBounds.setSize(0, 0); lineBounds.setLocation(x1, y1); lineBounds.union(x2, y2); lineBounds.expand(tolerance, tolerance); if (!lineBounds.contains(px, py)) { return false; } /* * If this is horizontal, vertical line or dot then the distance between * specified point and segment is not more then tolerance (due to the * lineBounds check above) */ if (x1 == x2 || y1 == y2) { return true; } /* * Calculating square distance from specified point to this segment * using formula for Dot product of two vectors. */ long v1x = x2 - x1; long v1y = y2 - y1; long v2x = px - x1; long v2y = py - y1; long numerator = v2x * v1y - v1x * v2y; long denominator = v1x * v1x + v1y * v1y; long squareDistance = numerator * numerator / denominator; return squareDistance <= tolerance * tolerance; } /** * One simple way of finding whether the point is inside or outside a simple * polygon is to test how many times a ray starting from the point * intersects the edges of the polygon. If the point in question is not on * the boundary of the polygon, the number of intersections is an even * number if the point is outside, and it is odd if inside. * * @see PointList#polygonContainsPoint(int, int) * @since 3.5 */ public static boolean polygonContainsPoint(PointList points, int x, int y) { boolean isOdd = false; int coordinates[] = points.toIntArray(); int n = coordinates.length; if (n > 3) { // If there are at least 2 Points (4 ints) int x1, y1; int x0 = coordinates[n - 2]; int y0 = coordinates[n - 1]; for (int i = 0; i < n; x0 = x1, y0 = y1) { x1 = coordinates[i++]; y1 = coordinates[i++]; if (!segmentContaintPoint(y0, y1, y)) { // Current edge has no intersection with the point by Y // coordinates continue; } int crossProduct = crossProduct(x1, y1, x0, y0, x, y); if (crossProduct == 0) { // cross product == 0 only if this point is on the line // containing selected edge if (segmentContaintPoint(x0, x1, x)) { // This point is on the edge return true; } // This point is outside the edge - simply skipping possible // intersection (no parity changes) } else if ((y0 <= y && y < y1 && crossProduct > 0) || (y1 <= y && y < y0 && crossProduct < 0)) { // has intersection isOdd = !isOdd; } } return isOdd; } return false; } /** * @return true if segment with two ends x0, x1 contains point x */ private static boolean segmentContaintPoint(int x0, int x1, int x) { return !((x < x0 && x < x1) || (x > x0 && x > x1)); } /** * Calculating cross product of two vectors: 1. [ax - cx, ay - cx] 2. [bx - * cx, by - cy] */ private static int crossProduct(int ax, int ay, int bx, int by, int cx, int cy) { return (ax - cx) * (by - cy) - (ay - cy) * (bx - cx); } }