/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.tomcat.dbcp.pool2.impl; import java.io.Serializable; import java.util.AbstractQueue; import java.util.Collection; import java.util.Deque; import java.util.Iterator; import java.util.NoSuchElementException; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; /** * An optionally-bounded {@linkplain java.util.concurrent.BlockingDeque blocking * deque} based on linked nodes. * * <p> The optional capacity bound constructor argument serves as a * way to prevent excessive expansion. The capacity, if unspecified, * is equal to {@link Integer#MAX_VALUE}. Linked nodes are * dynamically created upon each insertion unless this would bring the * deque above capacity. * * <p>Most operations run in constant time (ignoring time spent * blocking). Exceptions include {@link #remove(Object) remove}, * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link * #removeLastOccurrence removeLastOccurrence}, {@link #contains * contains}, {@link #iterator iterator.remove()}, and the bulk * operations, all of which run in linear time. * * <p>This class and its iterator implement all of the * <em>optional</em> methods of the {@link Collection} and {@link * Iterator} interfaces. * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <E> the type of elements held in this collection * * Note: This was copied from Apache Harmony and modified to suit the needs of * Commons Pool. * * @since 2.0 */ class LinkedBlockingDeque<E> extends AbstractQueue<E> implements Deque<E>, Serializable { /* * Implemented as a simple doubly-linked list protected by a * single lock and using conditions to manage blocking. * * To implement weakly consistent iterators, it appears we need to * keep all Nodes GC-reachable from a predecessor dequeued Node. * That would cause two problems: * - allow a rogue Iterator to cause unbounded memory retention * - cause cross-generational linking of old Nodes to new Nodes if * a Node was tenured while live, which generational GCs have a * hard time dealing with, causing repeated major collections. * However, only non-deleted Nodes need to be reachable from * dequeued Nodes, and reachability does not necessarily have to * be of the kind understood by the GC. We use the trick of * linking a Node that has just been dequeued to itself. Such a * self-link implicitly means to jump to "first" (for next links) * or "last" (for prev links). */ /* * We have "diamond" multiple interface/abstract class inheritance * here, and that introduces ambiguities. Often we want the * BlockingDeque javadoc combined with the AbstractQueue * implementation, so a lot of method specs are duplicated here. */ private static final long serialVersionUID = -387911632671998426L; /** Doubly-linked list node class */ private static final class Node<E> { /** * The item, or null if this node has been removed. */ E item; /** * One of: * - the real predecessor Node * - this Node, meaning the predecessor is tail * - null, meaning there is no predecessor */ Node<E> prev; /** * One of: * - the real successor Node * - this Node, meaning the successor is head * - null, meaning there is no successor */ Node<E> next; /** * Create a new list node. * * @param x The list item * @param p Previous item * @param n Next item */ Node(final E x, final Node<E> p, final Node<E> n) { item = x; prev = p; next = n; } } /** * Pointer to first node. * Invariant: (first == null && last == null) || * (first.prev == null && first.item != null) */ private transient Node<E> first; // @GuardedBy("lock") /** * Pointer to last node. * Invariant: (first == null && last == null) || * (last.next == null && last.item != null) */ private transient Node<E> last; // @GuardedBy("lock") /** Number of items in the deque */ private transient int count; // @GuardedBy("lock") /** Maximum number of items in the deque */ private final int capacity; /** Main lock guarding all access */ private final InterruptibleReentrantLock lock; /** Condition for waiting takes */ private final Condition notEmpty; /** Condition for waiting puts */ private final Condition notFull; /** * Creates a {@code LinkedBlockingDeque} with a capacity of * {@link Integer#MAX_VALUE}. */ public LinkedBlockingDeque() { this(Integer.MAX_VALUE); } /** * Creates a {@code LinkedBlockingDeque} with a capacity of * {@link Integer#MAX_VALUE} and the given fairness policy. * @param fairness true means threads waiting on the deque should be served * as if waiting in a FIFO request queue */ public LinkedBlockingDeque(final boolean fairness) { this(Integer.MAX_VALUE, fairness); } /** * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity. * * @param capacity the capacity of this deque * @throws IllegalArgumentException if {@code capacity} is less than 1 */ public LinkedBlockingDeque(final int capacity) { this(capacity, false); } /** * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity * and fairness policy. * * @param capacity the capacity of this deque * @param fairness true means threads waiting on the deque should be served * as if waiting in a FIFO request queue * @throws IllegalArgumentException if {@code capacity} is less than 1 */ public LinkedBlockingDeque(final int capacity, final boolean fairness) { if (capacity <= 0) { throw new IllegalArgumentException(); } this.capacity = capacity; lock = new InterruptibleReentrantLock(fairness); notEmpty = lock.newCondition(); notFull = lock.newCondition(); } /** * Creates a {@code LinkedBlockingDeque} with a capacity of * {@link Integer#MAX_VALUE}, initially containing the elements of * the given collection, added in traversal order of the * collection's iterator. * * @param c the collection of elements to initially contain * @throws NullPointerException if the specified collection or any * of its elements are null */ public LinkedBlockingDeque(final Collection<? extends E> c) { this(Integer.MAX_VALUE); lock.lock(); // Never contended, but necessary for visibility try { for (final E e : c) { if (e == null) { throw new NullPointerException(); } if (!linkLast(e)) { throw new IllegalStateException("Deque full"); } } } finally { lock.unlock(); } } // Basic linking and unlinking operations, called only while holding lock /** * Links provided element as first element, or returns false if full. * * @param e The element to link as the first element. * * @return {@code true} if successful, otherwise {@code false} */ private boolean linkFirst(final E e) { // assert lock.isHeldByCurrentThread(); if (count >= capacity) { return false; } final Node<E> f = first; final Node<E> x = new Node<>(e, null, f); first = x; if (last == null) { last = x; } else { f.prev = x; } ++count; notEmpty.signal(); return true; } /** * Links provided element as last element, or returns false if full. * * @param e The element to link as the last element. * * @return {@code true} if successful, otherwise {@code false} */ private boolean linkLast(final E e) { // assert lock.isHeldByCurrentThread(); if (count >= capacity) { return false; } final Node<E> l = last; final Node<E> x = new Node<>(e, l, null); last = x; if (first == null) { first = x; } else { l.next = x; } ++count; notEmpty.signal(); return true; } /** * Removes and returns the first element, or null if empty. * * @return The first element or {@code null} if empty */ private E unlinkFirst() { // assert lock.isHeldByCurrentThread(); final Node<E> f = first; if (f == null) { return null; } final Node<E> n = f.next; final E item = f.item; f.item = null; f.next = f; // help GC first = n; if (n == null) { last = null; } else { n.prev = null; } --count; notFull.signal(); return item; } /** * Removes and returns the last element, or null if empty. * * @return The first element or {@code null} if empty */ private E unlinkLast() { // assert lock.isHeldByCurrentThread(); final Node<E> l = last; if (l == null) { return null; } final Node<E> p = l.prev; final E item = l.item; l.item = null; l.prev = l; // help GC last = p; if (p == null) { first = null; } else { p.next = null; } --count; notFull.signal(); return item; } /** * Unlinks the provided node. * * @param x The node to unlink */ private void unlink(final Node<E> x) { // assert lock.isHeldByCurrentThread(); final Node<E> p = x.prev; final Node<E> n = x.next; if (p == null) { unlinkFirst(); } else if (n == null) { unlinkLast(); } else { p.next = n; n.prev = p; x.item = null; // Don't mess with x's links. They may still be in use by // an iterator. --count; notFull.signal(); } } // BlockingDeque methods /** * {@inheritDoc} */ @Override public void addFirst(final E e) { if (!offerFirst(e)) { throw new IllegalStateException("Deque full"); } } /** * {@inheritDoc} */ @Override public void addLast(final E e) { if (!offerLast(e)) { throw new IllegalStateException("Deque full"); } } /** * {@inheritDoc} */ @Override public boolean offerFirst(final E e) { if (e == null) { throw new NullPointerException(); } lock.lock(); try { return linkFirst(e); } finally { lock.unlock(); } } /** * {@inheritDoc} */ @Override public boolean offerLast(final E e) { if (e == null) { throw new NullPointerException(); } lock.lock(); try { return linkLast(e); } finally { lock.unlock(); } } /** * Links the provided element as the first in the queue, waiting until there * is space to do so if the queue is full. * * @param e element to link * * @throws NullPointerException if e is null * @throws InterruptedException if the thread is interrupted whilst waiting * for space */ public void putFirst(final E e) throws InterruptedException { if (e == null) { throw new NullPointerException(); } lock.lock(); try { while (!linkFirst(e)) { notFull.await(); } } finally { lock.unlock(); } } /** * Links the provided element as the last in the queue, waiting until there * is space to do so if the queue is full. * * @param e element to link * * @throws NullPointerException if e is null * @throws InterruptedException if the thread is interrupted whilst waiting * for space */ public void putLast(final E e) throws InterruptedException { if (e == null) { throw new NullPointerException(); } lock.lock(); try { while (!linkLast(e)) { notFull.await(); } } finally { lock.unlock(); } } /** * Links the provided element as the first in the queue, waiting up to the * specified time to do so if the queue is full. * * @param e element to link * @param timeout length of time to wait * @param unit units that timeout is expressed in * * @return {@code true} if successful, otherwise {@code false} * * @throws NullPointerException if e is null * @throws InterruptedException if the thread is interrupted whilst waiting * for space */ public boolean offerFirst(final E e, final long timeout, final TimeUnit unit) throws InterruptedException { if (e == null) { throw new NullPointerException(); } long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { while (!linkFirst(e)) { if (nanos <= 0) { return false; } nanos = notFull.awaitNanos(nanos); } return true; } finally { lock.unlock(); } } /** * Links the provided element as the last in the queue, waiting up to the * specified time to do so if the queue is full. * * @param e element to link * @param timeout length of time to wait * @param unit units that timeout is expressed in * * @return {@code true} if successful, otherwise {@code false} * * @throws NullPointerException if e is null * @throws InterruptedException if the thread is interrupted whist waiting * for space */ public boolean offerLast(final E e, final long timeout, final TimeUnit unit) throws InterruptedException { if (e == null) { throw new NullPointerException(); } long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { while (!linkLast(e)) { if (nanos <= 0) { return false; } nanos = notFull.awaitNanos(nanos); } return true; } finally { lock.unlock(); } } /** * {@inheritDoc} */ @Override public E removeFirst() { final E x = pollFirst(); if (x == null) { throw new NoSuchElementException(); } return x; } /** * {@inheritDoc} */ @Override public E removeLast() { final E x = pollLast(); if (x == null) { throw new NoSuchElementException(); } return x; } @Override public E pollFirst() { lock.lock(); try { return unlinkFirst(); } finally { lock.unlock(); } } @Override public E pollLast() { lock.lock(); try { return unlinkLast(); } finally { lock.unlock(); } } /** * Unlinks the first element in the queue, waiting until there is an element * to unlink if the queue is empty. * * @return the unlinked element * @throws InterruptedException if the current thread is interrupted */ public E takeFirst() throws InterruptedException { lock.lock(); try { E x; while ( (x = unlinkFirst()) == null) { notEmpty.await(); } return x; } finally { lock.unlock(); } } /** * Unlinks the last element in the queue, waiting until there is an element * to unlink if the queue is empty. * * @return the unlinked element * @throws InterruptedException if the current thread is interrupted */ public E takeLast() throws InterruptedException { lock.lock(); try { E x; while ( (x = unlinkLast()) == null) { notEmpty.await(); } return x; } finally { lock.unlock(); } } /** * Unlinks the first element in the queue, waiting up to the specified time * to do so if the queue is empty. * * @param timeout length of time to wait * @param unit units that timeout is expressed in * * @return the unlinked element * @throws InterruptedException if the current thread is interrupted */ public E pollFirst(final long timeout, final TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { E x; while ( (x = unlinkFirst()) == null) { if (nanos <= 0) { return null; } nanos = notEmpty.awaitNanos(nanos); } return x; } finally { lock.unlock(); } } /** * Unlinks the last element in the queue, waiting up to the specified time * to do so if the queue is empty. * * @param timeout length of time to wait * @param unit units that timeout is expressed in * * @return the unlinked element * @throws InterruptedException if the current thread is interrupted */ public E pollLast(final long timeout, final TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { E x; while ( (x = unlinkLast()) == null) { if (nanos <= 0) { return null; } nanos = notEmpty.awaitNanos(nanos); } return x; } finally { lock.unlock(); } } /** * {@inheritDoc} */ @Override public E getFirst() { final E x = peekFirst(); if (x == null) { throw new NoSuchElementException(); } return x; } /** * {@inheritDoc} */ @Override public E getLast() { final E x = peekLast(); if (x == null) { throw new NoSuchElementException(); } return x; } @Override public E peekFirst() { lock.lock(); try { return first == null ? null : first.item; } finally { lock.unlock(); } } @Override public E peekLast() { lock.lock(); try { return last == null ? null : last.item; } finally { lock.unlock(); } } @Override public boolean removeFirstOccurrence(final Object o) { if (o == null) { return false; } lock.lock(); try { for (Node<E> p = first; p != null; p = p.next) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } @Override public boolean removeLastOccurrence(final Object o) { if (o == null) { return false; } lock.lock(); try { for (Node<E> p = last; p != null; p = p.prev) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } // BlockingQueue methods /** * {@inheritDoc} */ @Override public boolean add(final E e) { addLast(e); return true; } /** * {@inheritDoc} */ @Override public boolean offer(final E e) { return offerLast(e); } /** * Links the provided element as the last in the queue, waiting until there * is space to do so if the queue is full. * * <p>This method is equivalent to {@link #putLast(Object)}. * * @param e element to link * * @throws NullPointerException if e is null * @throws InterruptedException if the thread is interrupted whilst waiting * for space */ public void put(final E e) throws InterruptedException { putLast(e); } /** * Links the provided element as the last in the queue, waiting up to the * specified time to do so if the queue is full. * <p> * This method is equivalent to {@link #offerLast(Object, long, TimeUnit)} * * @param e element to link * @param timeout length of time to wait * @param unit units that timeout is expressed in * * @return {@code true} if successful, otherwise {@code false} * * @throws NullPointerException if e is null * @throws InterruptedException if the thread is interrupted whilst waiting * for space */ public boolean offer(final E e, final long timeout, final TimeUnit unit) throws InterruptedException { return offerLast(e, timeout, unit); } /** * Retrieves and removes the head of the queue represented by this deque. * This method differs from {@link #poll poll} only in that it throws an * exception if this deque is empty. * * <p>This method is equivalent to {@link #removeFirst() removeFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E remove() { return removeFirst(); } @Override public E poll() { return pollFirst(); } /** * Unlinks the first element in the queue, waiting until there is an element * to unlink if the queue is empty. * * <p>This method is equivalent to {@link #takeFirst()}. * * @return the unlinked element * @throws InterruptedException if the current thread is interrupted */ public E take() throws InterruptedException { return takeFirst(); } /** * Unlinks the first element in the queue, waiting up to the specified time * to do so if the queue is empty. * * <p>This method is equivalent to {@link #pollFirst(long, TimeUnit)}. * * @param timeout length of time to wait * @param unit units that timeout is expressed in * * @return the unlinked element * @throws InterruptedException if the current thread is interrupted */ public E poll(final long timeout, final TimeUnit unit) throws InterruptedException { return pollFirst(timeout, unit); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in that * it throws an exception if this deque is empty. * * <p>This method is equivalent to {@link #getFirst() getFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E element() { return getFirst(); } @Override public E peek() { return peekFirst(); } /** * Returns the number of additional elements that this deque can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this deque * less the current {@code size} of this deque. * * <p>Note that you <em>cannot</em> always tell if an attempt to insert * an element will succeed by inspecting {@code remainingCapacity} * because it may be the case that another thread is about to * insert or remove an element. * * @return The number of additional elements the queue is able to accept */ public int remainingCapacity() { lock.lock(); try { return capacity - count; } finally { lock.unlock(); } } /** * Empty the queue to the specified collection. * * @param c The collection to add the elements to * * @return number of elements added to the collection * * @throws UnsupportedOperationException if the add operation is not * supported by the specified collection * @throws ClassCastException if the class of the elements held by this * collection prevents them from being added to the specified * collection * @throws NullPointerException if c is null * @throws IllegalArgumentException if c is this instance */ public int drainTo(final Collection<? super E> c) { return drainTo(c, Integer.MAX_VALUE); } /** * Empty no more than the specified number of elements from the queue to the * specified collection. * * @param c collection to add the elements to * @param maxElements maximum number of elements to remove from the queue * * @return number of elements added to the collection * @throws UnsupportedOperationException if the add operation is not * supported by the specified collection * @throws ClassCastException if the class of the elements held by this * collection prevents them from being added to the specified * collection * @throws NullPointerException if c is null * @throws IllegalArgumentException if c is this instance */ public int drainTo(final Collection<? super E> c, final int maxElements) { if (c == null) { throw new NullPointerException(); } if (c == this) { throw new IllegalArgumentException(); } lock.lock(); try { final int n = Math.min(maxElements, count); for (int i = 0; i < n; i++) { c.add(first.item); // In this order, in case add() throws. unlinkFirst(); } return n; } finally { lock.unlock(); } } // Stack methods /** * {@inheritDoc} */ @Override public void push(final E e) { addFirst(e); } /** * {@inheritDoc} */ @Override public E pop() { return removeFirst(); } // Collection methods /** * Removes the first occurrence of the specified element from this deque. * If the deque does not contain the element, it is unchanged. * More formally, removes the first element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * * <p>This method is equivalent to * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}. * * @param o element to be removed from this deque, if present * @return {@code true} if this deque changed as a result of the call */ @Override public boolean remove(final Object o) { return removeFirstOccurrence(o); } /** * Returns the number of elements in this deque. * * @return the number of elements in this deque */ @Override public int size() { lock.lock(); try { return count; } finally { lock.unlock(); } } /** * Returns {@code true} if this deque contains the specified element. * More formally, returns {@code true} if and only if this deque contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this deque * @return {@code true} if this deque contains the specified element */ @Override public boolean contains(final Object o) { if (o == null) { return false; } lock.lock(); try { for (Node<E> p = first; p != null; p = p.next) { if (o.equals(p.item)) { return true; } } return false; } finally { lock.unlock(); } } /* * TODO: Add support for more efficient bulk operations. * * We don't want to acquire the lock for every iteration, but we * also want other threads a chance to interact with the * collection, especially when count is close to capacity. */ // /** // * Adds all of the elements in the specified collection to this // * queue. Attempts to addAll of a queue to itself result in // * {@code IllegalArgumentException}. Further, the behavior of // * this operation is undefined if the specified collection is // * modified while the operation is in progress. // * // * @param c collection containing elements to be added to this queue // * @return {@code true} if this queue changed as a result of the call // * @throws ClassCastException // * @throws NullPointerException // * @throws IllegalArgumentException // * @throws IllegalStateException // * @see #add(Object) // */ // public boolean addAll(Collection<? extends E> c) { // if (c == null) // throw new NullPointerException(); // if (c == this) // throw new IllegalArgumentException(); // final ReentrantLock lock = this.lock; // lock.lock(); // try { // boolean modified = false; // for (E e : c) // if (linkLast(e)) // modified = true; // return modified; // } finally { // lock.unlock(); // } // } /** * Returns an array containing all of the elements in this deque, in * proper sequence (from first to last element). * * <p>The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this deque */ @Override public Object[] toArray() { lock.lock(); try { final Object[] a = new Object[count]; int k = 0; for (Node<E> p = first; p != null; p = p.next) { a[k++] = p.item; } return a; } finally { lock.unlock(); } } /** * {@inheritDoc} */ @SuppressWarnings("unchecked") @Override public <T> T[] toArray(T[] a) { lock.lock(); try { if (a.length < count) { a = (T[])java.lang.reflect.Array.newInstance (a.getClass().getComponentType(), count); } int k = 0; for (Node<E> p = first; p != null; p = p.next) { a[k++] = (T)p.item; } if (a.length > k) { a[k] = null; } return a; } finally { lock.unlock(); } } @Override public String toString() { lock.lock(); try { return super.toString(); } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this deque. * The deque will be empty after this call returns. */ @Override public void clear() { lock.lock(); try { for (Node<E> f = first; f != null;) { f.item = null; final Node<E> n = f.next; f.prev = null; f.next = null; f = n; } first = last = null; count = 0; notFull.signalAll(); } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this deque in proper sequence. * The elements will be returned in order from first (head) to last (tail). * The returned {@code Iterator} is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException * ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * * @return an iterator over the elements in this deque in proper sequence */ @Override public Iterator<E> iterator() { return new Itr(); } /** * {@inheritDoc} */ @Override public Iterator<E> descendingIterator() { return new DescendingItr(); } /** * Base class for Iterators for LinkedBlockingDeque */ private abstract class AbstractItr implements Iterator<E> { /** * The next node to return in next() */ Node<E> next; /** * nextItem holds on to item fields because once we claim that * an element exists in hasNext(), we must return item read * under lock (in advance()) even if it was in the process of * being removed when hasNext() was called. */ E nextItem; /** * Node returned by most recent call to next. Needed by remove. * Reset to null if this element is deleted by a call to remove. */ private Node<E> lastRet; /** * Obtain the first node to be returned by the iterator. * * @return first node */ abstract Node<E> firstNode(); /** * For a given node, obtain the next node to be returned by the * iterator. * * @param n given node * * @return next node */ abstract Node<E> nextNode(Node<E> n); /** * Create a new iterator. Sets the initial position. */ AbstractItr() { // set to initial position lock.lock(); try { next = firstNode(); nextItem = next == null ? null : next.item; } finally { lock.unlock(); } } /** * Returns the successor node of the given non-null, but * possibly previously deleted, node. * * @param n node whose successor is sought * @return successor node */ private Node<E> succ(Node<E> n) { // Chains of deleted nodes ending in null or self-links // are possible if multiple interior nodes are removed. for (;;) { final Node<E> s = nextNode(n); if (s == null) { return null; } else if (s.item != null) { return s; } else if (s == n) { return firstNode(); } else { n = s; } } } /** * Advances next. */ void advance() { lock.lock(); try { // assert next != null; next = succ(next); nextItem = next == null ? null : next.item; } finally { lock.unlock(); } } @Override public boolean hasNext() { return next != null; } @Override public E next() { if (next == null) { throw new NoSuchElementException(); } lastRet = next; final E x = nextItem; advance(); return x; } @Override public void remove() { final Node<E> n = lastRet; if (n == null) { throw new IllegalStateException(); } lastRet = null; lock.lock(); try { if (n.item != null) { unlink(n); } } finally { lock.unlock(); } } } /** Forward iterator */ private class Itr extends AbstractItr { @Override Node<E> firstNode() { return first; } @Override Node<E> nextNode(final Node<E> n) { return n.next; } } /** Descending iterator */ private class DescendingItr extends AbstractItr { @Override Node<E> firstNode() { return last; } @Override Node<E> nextNode(final Node<E> n) { return n.prev; } } /** * Save the state of this deque to a stream (that is, serialize it). * * @serialData The capacity (int), followed by elements (each an * {@code Object}) in the proper order, followed by a null * @param s the stream */ private void writeObject(final java.io.ObjectOutputStream s) throws java.io.IOException { lock.lock(); try { // Write out capacity and any hidden stuff s.defaultWriteObject(); // Write out all elements in the proper order. for (Node<E> p = first; p != null; p = p.next) { s.writeObject(p.item); } // Use trailing null as sentinel s.writeObject(null); } finally { lock.unlock(); } } /** * Reconstitute this deque from a stream (that is, * deserialize it). * @param s the stream */ private void readObject(final java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); count = 0; first = null; last = null; // Read in all elements and place in queue for (;;) { @SuppressWarnings("unchecked") final E item = (E)s.readObject(); if (item == null) { break; } add(item); } } // Monitoring methods /** * Returns true if there are threads waiting to take instances from this deque. * See disclaimer on accuracy in * {@link java.util.concurrent.locks.ReentrantLock#hasWaiters(Condition)}. * * @return true if there is at least one thread waiting on this deque's notEmpty condition. */ public boolean hasTakeWaiters() { lock.lock(); try { return lock.hasWaiters(notEmpty); } finally { lock.unlock(); } } /** * Returns the length of the queue of threads waiting to take instances from this deque. * See disclaimer on accuracy in * {@link java.util.concurrent.locks.ReentrantLock#getWaitQueueLength(Condition)}. * * @return number of threads waiting on this deque's notEmpty condition. */ public int getTakeQueueLength() { lock.lock(); try { return lock.getWaitQueueLength(notEmpty); } finally { lock.unlock(); } } /** * Interrupts the threads currently waiting to take an object from the pool. * See disclaimer on accuracy in * {@link java.util.concurrent.locks.ReentrantLock#getWaitingThreads(Condition)}. */ public void interuptTakeWaiters() { lock.lock(); try { lock.interruptWaiters(notEmpty); } finally { lock.unlock(); } } }