/** * @(#) JenkinsHash.java 2011-08-18 */ package org.streaminer.util.hash; /** * This is an implementation of Bob Jenkins' hash. It can produce both 32-bit * and 64-bit hash values. * <p> * Generates same hash values as the <a * href="http://www.burtleburtle.net/bob/hash/doobs.html">original * implementation written by Bob Jenkins</a>. * * @version $Revision: $ * @author $Author: vijaykandy $ */ public class JenkinsHash extends Hash { private static long INT_MASK = 0x00000000ffffffffL; private static long BYTE_MASK = 0x00000000000000ffL; private static JenkinsHash _instance = new JenkinsHash(); public static Hash getInstance() { return _instance; } public int hash(Object o) { if (o == null) { return 0; } if (o instanceof String) { return hash32(((String) o).getBytes()); } if (o instanceof byte[]) { return hash32((byte[]) o); } return hash32(o.toString().getBytes()); } public long hash64(Object o) { if (o == null) { return 0; } if (o instanceof String) { return hash64(((String) o).getBytes()); } if (o instanceof byte[]) { return hash64((byte[]) o); } return hash64(o.toString().getBytes()); } /** * Returns a 64-bit hash value. * * @param input * @return 64-bit hash value */ public long hash64(byte[] input) { int pc = 0; int pb = 0; return hash(input, input.length, pc, pb, false); } /** * Returns a 32-bit hash value. * * @param input * @return 32-bit hash value */ public int hash32(byte[] input) { int pc = 0; int pb = 0; return (int) hash(input, input.length, pc, pb, true); } /** * Hash algorithm. * * @param k * message on which hash is computed * @param length * message size * @param pc * primary init value * @param pb * secondary init value * @param is32BitHash * true if just 32-bit hash is expected. * @return */ private long hash(byte[] k, int length, int pc, int pb, boolean is32BitHash) { int a, b, c; a = b = c = 0xdeadbeef + length + pc; c += pb; int offset = 0; while (length > 12) { a += k[offset + 0]; a += k[offset + 1] << 8; a += k[offset + 2] << 16; a += k[offset + 3] << 24; b += k[offset + 4]; b += k[offset + 5] << 8; b += k[offset + 6] << 16; b += k[offset + 7] << 24; c += k[offset + 8]; c += k[offset + 9] << 8; c += k[offset + 10] << 16; c += k[offset + 11] << 24; // mix(a, b, c); a -= c; a ^= rot(c, 4); c += b; b -= a; b ^= rot(a, 6); a += c; c -= b; c ^= rot(b, 8); b += a; a -= c; a ^= rot(c, 16); c += b; b -= a; b ^= rot(a, 19); a += c; c -= b; c ^= rot(b, 4); b += a; length -= 12; offset += 12; } switch (length) { case 12: c += k[offset + 11] << 24; case 11: c += k[offset + 10] << 16; case 10: c += k[offset + 9] << 8; case 9: c += k[offset + 8]; case 8: b += k[offset + 7] << 24; case 7: b += k[offset + 6] << 16; case 6: b += k[offset + 5] << 8; case 5: b += k[offset + 4]; case 4: a += k[offset + 3] << 24; case 3: a += k[offset + 2] << 16; case 2: a += k[offset + 1] << 8; case 1: a += k[offset + 0]; break; case 0: return is32BitHash ? c : (c | ((long) (b << 32))); } // Final mixing of thrree 32-bit values in to c c ^= b; c -= rot(b, 14); a ^= c; a -= rot(c, 11); b ^= a; b -= rot(a, 25); c ^= b; c -= rot(b, 16); a ^= c; a -= rot(c, 4); b ^= a; b -= rot(a, 14); c ^= b; c -= rot(b, 24); return is32BitHash ? c : (c | ((long) (b << 32))); } private static long rot(int x, int distance) { return (x << distance) | (x >> (32 - distance)); // return (x << distance) | (x >>> -distance); } private static long rot(long val, int pos) { return ((Integer.rotateLeft( (int)(val & INT_MASK), pos)) & INT_MASK); } /** * taken from hashlittle() -- hash a variable-length key into a 32-bit value * * @param key the key (the unaligned variable-length array of bytes) * @param nbytes number of bytes to include in hash * @param initval can be any integer value * @return a 32-bit value. Every bit of the key affects every bit of the * return value. Two keys differing by one or two bits will have totally * different hash values. * * <p>The best hash table sizes are powers of 2. There is no need to do mod * a prime (mod is sooo slow!). If you need less than 32 bits, use a bitmask. * For example, if you need only 10 bits, do * <code>h = (h & hashmask(10));</code> * In which case, the hash table should have hashsize(10) elements. * * <p>If you are hashing n strings byte[][] k, do it like this: * for (int i = 0, h = 0; i < n; ++i) h = hash( k[i], h); * * <p>By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this * code any way you wish, private, educational, or commercial. It's free. * * <p>Use for hash table lookup, or anything where one collision in 2^^32 is * acceptable. Do NOT use for cryptographic purposes. */ @Override @SuppressWarnings("fallthrough") public int hash(byte[] key, int nbytes, int initval) { int length = nbytes; long a, b, c; // We use longs because we don't have unsigned ints a = b = c = (0x00000000deadbeefL + length + initval) & INT_MASK; int offset = 0; for (; length > 12; offset += 12, length -= 12) { a = (a + (key[offset + 0] & BYTE_MASK)) & INT_MASK; a = (a + (((key[offset + 1] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; a = (a + (((key[offset + 2] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; a = (a + (((key[offset + 3] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; b = (b + (key[offset + 4] & BYTE_MASK)) & INT_MASK; b = (b + (((key[offset + 5] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; b = (b + (((key[offset + 6] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; b = (b + (((key[offset + 7] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; c = (c + (key[offset + 8] & BYTE_MASK)) & INT_MASK; c = (c + (((key[offset + 9] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; c = (c + (((key[offset + 10] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; c = (c + (((key[offset + 11] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; /* * mix -- mix 3 32-bit values reversibly. * This is reversible, so any information in (a,b,c) before mix() is * still in (a,b,c) after mix(). * * If four pairs of (a,b,c) inputs are run through mix(), or through * mix() in reverse, there are at least 32 bits of the output that * are sometimes the same for one pair and different for another pair. * * This was tested for: * - pairs that differed by one bit, by two bits, in any combination * of top bits of (a,b,c), or in any combination of bottom bits of * (a,b,c). * - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as * is commonly produced by subtraction) look like a single 1-bit * difference. * - the base values were pseudorandom, all zero but one bit set, or * all zero plus a counter that starts at zero. * * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that * satisfy this are * 4 6 8 16 19 4 * 9 15 3 18 27 15 * 14 9 3 7 17 3 * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for * "differ" defined as + with a one-bit base and a two-bit delta. I * used http://burtleburtle.net/bob/hash/avalanche.html to choose * the operations, constants, and arrangements of the variables. * * This does not achieve avalanche. There are input bits of (a,b,c) * that fail to affect some output bits of (a,b,c), especially of a. * The most thoroughly mixed value is c, but it doesn't really even * achieve avalanche in c. * * This allows some parallelism. Read-after-writes are good at doubling * the number of bits affected, so the goal of mixing pulls in the * opposite direction as the goal of parallelism. I did what I could. * Rotates seem to cost as much as shifts on every machine I could lay * my hands on, and rotates are much kinder to the top and bottom bits, * so I used rotates. * * #define mix(a,b,c) \ * { \ * a -= c; a ^= rot(c, 4); c += b; \ * b -= a; b ^= rot(a, 6); a += c; \ * c -= b; c ^= rot(b, 8); b += a; \ * a -= c; a ^= rot(c,16); c += b; \ * b -= a; b ^= rot(a,19); a += c; \ * c -= b; c ^= rot(b, 4); b += a; \ * } * * mix(a,b,c); */ a = (a - c) & INT_MASK; a ^= rot(c, 4); c = (c + b) & INT_MASK; b = (b - a) & INT_MASK; b ^= rot(a, 6); a = (a + c) & INT_MASK; c = (c - b) & INT_MASK; c ^= rot(b, 8); b = (b + a) & INT_MASK; a = (a - c) & INT_MASK; a ^= rot(c,16); c = (c + b) & INT_MASK; b = (b - a) & INT_MASK; b ^= rot(a,19); a = (a + c) & INT_MASK; c = (c - b) & INT_MASK; c ^= rot(b, 4); b = (b + a) & INT_MASK; } //-------------------------------- last block: affect all 32 bits of (c) switch (length) { // all the case statements fall through case 12: c = (c + (((key[offset + 11] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; case 11: c = (c + (((key[offset + 10] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; case 10: c = (c + (((key[offset + 9] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; case 9: c = (c + (key[offset + 8] & BYTE_MASK)) & INT_MASK; case 8: b = (b + (((key[offset + 7] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; case 7: b = (b + (((key[offset + 6] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; case 6: b = (b + (((key[offset + 5] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; case 5: b = (b + (key[offset + 4] & BYTE_MASK)) & INT_MASK; case 4: a = (a + (((key[offset + 3] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; case 3: a = (a + (((key[offset + 2] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; case 2: a = (a + (((key[offset + 1] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; case 1: a = (a + (key[offset + 0] & BYTE_MASK)) & INT_MASK; break; case 0: return (int)(c & INT_MASK); } /* * final -- final mixing of 3 32-bit values (a,b,c) into c * * Pairs of (a,b,c) values differing in only a few bits will usually * produce values of c that look totally different. This was tested for * - pairs that differed by one bit, by two bits, in any combination * of top bits of (a,b,c), or in any combination of bottom bits of * (a,b,c). * * - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as * is commonly produced by subtraction) look like a single 1-bit * difference. * * - the base values were pseudorandom, all zero but one bit set, or * all zero plus a counter that starts at zero. * * These constants passed: * 14 11 25 16 4 14 24 * 12 14 25 16 4 14 24 * and these came close: * 4 8 15 26 3 22 24 * 10 8 15 26 3 22 24 * 11 8 15 26 3 22 24 * * #define final(a,b,c) \ * { * c ^= b; c -= rot(b,14); \ * a ^= c; a -= rot(c,11); \ * b ^= a; b -= rot(a,25); \ * c ^= b; c -= rot(b,16); \ * a ^= c; a -= rot(c,4); \ * b ^= a; b -= rot(a,14); \ * c ^= b; c -= rot(b,24); \ * } * */ c ^= b; c = (c - rot(b,14)) & INT_MASK; a ^= c; a = (a - rot(c,11)) & INT_MASK; b ^= a; b = (b - rot(a,25)) & INT_MASK; c ^= b; c = (c - rot(b,16)) & INT_MASK; a ^= c; a = (a - rot(c,4)) & INT_MASK; b ^= a; b = (b - rot(a,14)) & INT_MASK; c ^= b; c = (c - rot(b,24)) & INT_MASK; return (int)(c & INT_MASK); } @Override public long hash64(byte[] bytes, int length, int seed) { return hash64(bytes); } }