/* * Copyright (C) 2012 Clearspring Technologies, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.streaminer.stream.cardinality; import org.streaminer.util.hash.MurmurHash; import org.streaminer.util.Bits; import org.streaminer.util.IBuilder; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.IOException; import java.io.Serializable; /** * Java implementation of HyperLogLog (HLL) algorithm from this paper: * <p/> * http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf * <p/> * HLL is an improved version of LogLog that is capable of estimating * the cardinality of a set with accuracy = 1.04/sqrt(m) where * m = 2^b. So we can control accuracy vs space usage by increasing * or decreasing b. * <p/> * The main benefit of using HLL over LL is that it only requires 64% * of the space that LL does to get the same accuracy. * <p/> * This implementation implements a single counter. If a large (millions) * number of counters are required you may want to refer to: * <p/> * http://dsiutils.dsi.unimi.it/ * <p/> * It has a more complex implementation of HLL that supports multiple counters * in a single object, drastically reducing the java overhead from creating * a large number of objects. * <p/> * This implementation leveraged a javascript implementation that Yammer has * been working on: * <p/> * https://github.com/yammer/probablyjs * <p> * Note that this implementation does not include the long range correction function * defined in the original paper. Empirical evidence shows that the correction * function causes more harm than good. * </p> * * <p> * Users have different motivations to use different types of hashing functions. * Rather than try to keep up with all available hash functions and to remove * the concern of causing future binary incompatibilities this class allows clients * to offer the value in hashed int or long form. This way clients are free * to change their hash function on their own time line. We recommend using Google's * Guava Murmur3_128 implementation as it provides good performance and speed when * high precision is required. In our tests the 32bit MurmurHash function included * in this project is faster and produces better results than the 32 bit murmur3 * implementation google provides. * </p> */ public class HyperLogLog implements IRichCardinality { private final RegisterSet registerSet; private final int log2m; private final double alphaMM; /** * Create a new HyperLogLog instance using the specified standard deviation. * * @param rsd The relative standard deviation for the counter. * smaller values create counters that require more space. */ public HyperLogLog(double rsd) { this(log2m(rsd)); } private static int log2m(double rsd) { return (int) (Math.log((1.106 / rsd) * (1.106 / rsd)) / Math.log(2)); } /** * Create a new HyperLogLog instance. The log2m parameter defines the accuracy of * the counter. The larger the log2m the better the accuracy. * <p/> * accuracy = 1.04/sqrt(2^log2m) * * @param log2m The number of bits to use as the basis for the HLL instance */ public HyperLogLog(int log2m) { this(log2m, new RegisterSet(1 << log2m)); } /** * Creates a new HyperLogLog instance using the given registers. * Used for unmarshalling a serialized instance and for merging multiple * counters together. * * @param log2m * @param registerSet The initial values for the register set * @throws IllegalArgumentException If log2m is not within the range [0, 30] */ public HyperLogLog(int log2m, RegisterSet registerSet) { if (log2m < 0 || log2m > 30) { throw new IllegalArgumentException("log2m argument is " + log2m + " and is outside the range [0, 30]"); } this.registerSet = registerSet; this.log2m = log2m; int m = 1 << this.log2m; // See the paper. switch (log2m) { case 4: alphaMM = 0.673 * m * m; break; case 5: alphaMM = 0.697 * m * m; break; case 6: alphaMM = 0.709 * m * m; break; default: alphaMM = (0.7213 / (1 + 1.079 / m)) * m * m; } } @Override public boolean offerHashed(long hashedValue) { // j becomes the binary address determined by the first b log2m of x // j will be between 0 and 2^log2m final int j = (int) (hashedValue >>> (Long.SIZE - log2m)); final int r = Long.numberOfLeadingZeros((hashedValue << this.log2m) | (1 << (this.log2m - 1)) + 1) + 1; return registerSet.updateIfGreater(j, r); } @Override public boolean offerHashed(int hashedValue) { // j becomes the binary address determined by the first b log2m of x // j will be between 0 and 2^log2m final int j = hashedValue >>> (Integer.SIZE - log2m); final int r = Integer.numberOfLeadingZeros((hashedValue << this.log2m) | (1 << (this.log2m - 1)) + 1) + 1; return registerSet.updateIfGreater(j, r); } @Override public boolean offer(Object o) { final int x = MurmurHash.getInstance().hash(o); return offerHashed(x); } @Override public long cardinality() { double registerSum = 0; int count = registerSet.count; double zeros = 0.0; for (int j = 0; j < registerSet.count; j++) { int val = registerSet.get(j); registerSum += 1.0 / (1<<val); if (val == 0) { zeros++; } } double estimate = alphaMM * (1 / registerSum); if (estimate <= (5.0 / 2.0) * count) { // Small Range Estimate return Math.round(count * Math.log(count / zeros)); } else { return Math.round(estimate); } } @Override public int sizeof() { return registerSet.size * 4; } @Override public byte[] getBytes() throws IOException { ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream dos = new DataOutputStream(baos); dos.writeInt(log2m); dos.writeInt(registerSet.size * 4); for (int x : registerSet.readOnlyBits()) { dos.writeInt(x); } return baos.toByteArray(); } /** Add all the elements of the other set to this set. * * This operation does not imply a loss of precision. * * @param other A compatible Hyperloglog instance (same log2m) * @throws CardinalityMergeException if other is not compatible */ public void addAll(HyperLogLog other) throws CardinalityMergeException { if (this.sizeof() != other.sizeof()) { throw new HyperLogLogMergeException("Cannot merge estimators of different sizes"); } registerSet.merge(other.registerSet); } @Override public IRichCardinality merge(IRichCardinality... estimators) throws CardinalityMergeException { HyperLogLog merged = new HyperLogLog(log2m); merged.addAll(this); if (estimators == null) { return merged; } for (IRichCardinality estimator : estimators) { if (!(estimator instanceof HyperLogLog)) { throw new HyperLogLogMergeException("Cannot merge estimators of different class"); } HyperLogLog hll = (HyperLogLog) estimator; merged.addAll(hll); } return merged; } public static class Builder implements IBuilder<IRichCardinality>, Serializable { private double rsd; public Builder(double rsd) { this.rsd = rsd; } @Override public HyperLogLog build() { return new HyperLogLog(rsd); } @Override public int sizeof() { int log2m = log2m(rsd); int k = 1 << log2m; return RegisterSet.getBits(k) * 4; } public static HyperLogLog build(byte[] bytes) throws IOException { ByteArrayInputStream bais = new ByteArrayInputStream(bytes); DataInputStream oi = new DataInputStream(bais); int log2m = oi.readInt(); int size = oi.readInt(); byte[] longArrayBytes = new byte[size]; oi.readFully(longArrayBytes); return new HyperLogLog(log2m, new RegisterSet(1 << log2m, Bits.getBits(longArrayBytes))); } } @SuppressWarnings("serial") protected static class HyperLogLogMergeException extends CardinalityMergeException { public HyperLogLogMergeException(String message) { super(message); } } }