/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.cassandra.db.commitlog; import java.io.File; import java.io.IOException; import java.io.RandomAccessFile; import java.nio.ByteBuffer; import java.nio.MappedByteBuffer; import java.nio.channels.FileChannel; import java.util.ArrayList; import java.util.Collection; import java.util.Comparator; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.UUID; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.atomic.AtomicInteger; import org.cliffc.high_scale_lib.NonBlockingHashMap; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.apache.cassandra.config.CFMetaData; import org.apache.cassandra.config.DatabaseDescriptor; import org.apache.cassandra.config.Schema; import org.apache.cassandra.db.ColumnFamily; import org.apache.cassandra.db.Mutation; import org.apache.cassandra.io.FSWriteError; import org.apache.cassandra.io.util.FileUtils; import org.apache.cassandra.utils.CLibrary; import org.apache.cassandra.utils.PureJavaCrc32; import org.apache.cassandra.utils.concurrent.OpOrder; import org.apache.cassandra.utils.concurrent.WaitQueue; /* * A single commit log file on disk. Manages creation of the file and writing mutations to disk, * as well as tracking the last mutation position of any "dirty" CFs covered by the segment file. Segment * files are initially allocated to a fixed size and can grow to accomidate a larger value if necessary. */ public class CommitLogSegment { private static final Logger logger = LoggerFactory.getLogger(CommitLogSegment.class); private final static long idBase; private final static AtomicInteger nextId = new AtomicInteger(1); static { long maxId = Long.MIN_VALUE; for (File file : new File(DatabaseDescriptor.getCommitLogLocation()).listFiles()) { if (CommitLogDescriptor.isValid(file.getName())) maxId = Math.max(CommitLogDescriptor.fromFileName(file.getName()).id, maxId); } idBase = Math.max(System.currentTimeMillis(), maxId + 1); } // The commit log entry overhead in bytes (int: length + int: head checksum + int: tail checksum) public static final int ENTRY_OVERHEAD_SIZE = 4 + 4 + 4; // The commit log (chained) sync marker/header size in bytes (int: length + int: checksum [segmentId, position]) static final int SYNC_MARKER_SIZE = 4 + 4; // The OpOrder used to order appends wrt sync private final OpOrder appendOrder = new OpOrder(); private final AtomicInteger allocatePosition = new AtomicInteger(); // Everything before this offset has been synced and written. The SYNC_MARKER_SIZE bytes after // each sync are reserved, and point forwards to the next such offset. The final // sync marker in a segment will be zeroed out, or point to EOF. private volatile int lastSyncedOffset; // the amount of the tail of the file we have allocated but not used - this is used when we discard a log segment // to ensure nobody writes to it after we've decided we're done with it private int discardedTailFrom; // a signal for writers to wait on to confirm the log message they provided has been written to disk private final WaitQueue syncComplete = new WaitQueue(); // a map of Cf->dirty position; this is used to permit marking Cfs clean whilst the log is still in use private final NonBlockingHashMap<UUID, AtomicInteger> cfDirty = new NonBlockingHashMap<>(1024); // a map of Cf->clean position; this is used to permit marking Cfs clean whilst the log is still in use private final ConcurrentHashMap<UUID, AtomicInteger> cfClean = new ConcurrentHashMap<>(); public final long id; private final File logFile; private final RandomAccessFile logFileAccessor; private final int fd; private final MappedByteBuffer buffer; public final CommitLogDescriptor descriptor; /** * @return a newly minted segment file */ static CommitLogSegment freshSegment() { return new CommitLogSegment(null); } static long getNextId() { return idBase + nextId.getAndIncrement(); } /** * Constructs a new segment file. * * @param filePath if not null, recycles the existing file by renaming it and truncating it to CommitLog.SEGMENT_SIZE. */ CommitLogSegment(String filePath) { id = getNextId(); descriptor = new CommitLogDescriptor(id); logFile = new File(DatabaseDescriptor.getCommitLogLocation(), descriptor.fileName()); boolean isCreating = true; try { if (filePath != null) { File oldFile = new File(filePath); if (oldFile.exists()) { logger.debug("Re-using discarded CommitLog segment for {} from {}", id, filePath); if (!oldFile.renameTo(logFile)) throw new IOException("Rename from " + filePath + " to " + id + " failed"); isCreating = false; } } // Open the initial the segment file logFileAccessor = new RandomAccessFile(logFile, "rw"); if (isCreating) logger.debug("Creating new commit log segment {}", logFile.getPath()); // Map the segment, extending or truncating it to the standard segment size. // (We may have restarted after a segment size configuration change, leaving "incorrectly" // sized segments on disk.) logFileAccessor.setLength(DatabaseDescriptor.getCommitLogSegmentSize()); fd = CLibrary.getfd(logFileAccessor.getFD()); buffer = logFileAccessor.getChannel().map(FileChannel.MapMode.READ_WRITE, 0, DatabaseDescriptor.getCommitLogSegmentSize()); // write the header CommitLogDescriptor.writeHeader(buffer, descriptor); // mark the initial sync marker as uninitialised buffer.putInt(CommitLogDescriptor.HEADER_SIZE, 0); buffer.putLong(CommitLogDescriptor.HEADER_SIZE + 4, 0); allocatePosition.set(CommitLogDescriptor.HEADER_SIZE + SYNC_MARKER_SIZE); lastSyncedOffset = CommitLogDescriptor.HEADER_SIZE; } catch (IOException e) { throw new FSWriteError(e, logFile); } } /** * Allocate space in this buffer for the provided mutation, and return the allocated Allocation object. * Returns null if there is not enough space in this segment, and a new segment is needed. */ Allocation allocate(Mutation mutation, int size) { final OpOrder.Group opGroup = appendOrder.start(); try { int position = allocate(size); if (position < 0) { opGroup.close(); return null; } markDirty(mutation, position); return new Allocation(this, opGroup, position, (ByteBuffer) buffer.duplicate().position(position).limit(position + size)); } catch (Throwable t) { opGroup.close(); throw t; } } // allocate bytes in the segment, or return -1 if not enough space private int allocate(int size) { while (true) { int prev = allocatePosition.get(); int next = prev + size; if (next >= buffer.capacity()) return -1; if (allocatePosition.compareAndSet(prev, next)) return prev; } } // ensures no more of this segment is writeable, by allocating any unused section at the end and marking it discarded void discardUnusedTail() { // we guard this with the OpOrdering instead of synchronised due to potential dead-lock with CLSM.advanceAllocatingFrom() // this actually isn't strictly necessary, as currently all calls to discardUnusedTail occur within a block // already protected by this OpOrdering, but to prevent future potential mistakes, we duplicate the protection here // so that the contract between discardUnusedTail() and sync() is more explicit. try (OpOrder.Group group = appendOrder.start()) { while (true) { int prev = allocatePosition.get(); // we set allocatePosition past buffer.capacity() to make sure we always set discardedTailFrom int next = buffer.capacity() + 1; if (prev == next) return; if (allocatePosition.compareAndSet(prev, next)) { discardedTailFrom = prev; return; } } } } /** * Wait for any appends or discardUnusedTail() operations started before this method was called */ void waitForModifications() { // issue a barrier and wait for it appendOrder.awaitNewBarrier(); } /** * Forces a disk flush for this segment file. */ synchronized void sync() { try { // check we have more work to do if (allocatePosition.get() <= lastSyncedOffset + SYNC_MARKER_SIZE) return; // allocate a new sync marker; this is both necessary in itself, but also serves to demarcate // the point at which we can safely consider records to have been completely written to int nextMarker; nextMarker = allocate(SYNC_MARKER_SIZE); boolean close = false; if (nextMarker < 0) { // ensure no more of this CLS is writeable, and mark ourselves for closing discardUnusedTail(); close = true; // wait for modifications guards both discardedTailFrom, and any outstanding appends waitForModifications(); if (discardedTailFrom < buffer.capacity() - SYNC_MARKER_SIZE) { // if there's room in the discard section to write an empty header, use that as the nextMarker nextMarker = discardedTailFrom; } else { // not enough space left in the buffer, so mark the next sync marker as the EOF position nextMarker = buffer.capacity(); } } else { waitForModifications(); } assert nextMarker > lastSyncedOffset; // write previous sync marker to point to next sync marker // we don't chain the crcs here to ensure this method is idempotent if it fails int offset = lastSyncedOffset; final PureJavaCrc32 crc = new PureJavaCrc32(); crc.updateInt((int) (id & 0xFFFFFFFFL)); crc.updateInt((int) (id >>> 32)); crc.updateInt(offset); buffer.putInt(offset, nextMarker); buffer.putInt(offset + 4, crc.getCrc()); // zero out the next sync marker so replayer can cleanly exit if (nextMarker < buffer.capacity()) { buffer.putInt(nextMarker, 0); buffer.putInt(nextMarker + 4, 0); } // actually perform the sync and signal those waiting for it buffer.force(); if (close) nextMarker = buffer.capacity(); lastSyncedOffset = nextMarker; syncComplete.signalAll(); CLibrary.trySkipCache(fd, offset, nextMarker); if (close) internalClose(); } catch (Exception e) // MappedByteBuffer.force() does not declare IOException but can actually throw it { throw new FSWriteError(e, getPath()); } } public boolean isStillAllocating() { return allocatePosition.get() < buffer.capacity(); } /** * Completely discards a segment file by deleting it. (Potentially blocking operation) */ void delete() { FileUtils.deleteWithConfirm(logFile); } /** * Recycle processes an unneeded segment file for reuse. * * @return a new CommitLogSegment representing the newly reusable segment. */ CommitLogSegment recycle() { try { sync(); } catch (FSWriteError e) { logger.error("I/O error flushing {} {}", this, e.getMessage()); throw e; } close(); return new CommitLogSegment(getPath()); } /** * @return the current ReplayPosition for this log segment */ public ReplayPosition getContext() { return new ReplayPosition(id, allocatePosition.get()); } /** * @return the file path to this segment */ public String getPath() { return logFile.getPath(); } /** * @return the file name of this segment */ public String getName() { return logFile.getName(); } void waitForFinalSync() { while (true) { WaitQueue.Signal signal = syncComplete.register(); if (lastSyncedOffset < buffer.capacity()) { signal.awaitUninterruptibly(); } else { signal.cancel(); break; } } } /** * Close the segment file. */ synchronized void close() { discardUnusedTail(); waitForModifications(); lastSyncedOffset = buffer.capacity(); internalClose(); } void internalClose() { try { if (FileUtils.isCleanerAvailable()) FileUtils.clean(buffer); logFileAccessor.close(); } catch (IOException e) { throw new FSWriteError(e, getPath()); } } void markDirty(Mutation mutation, int allocatedPosition) { for (ColumnFamily columnFamily : mutation.getColumnFamilies()) { // check for deleted CFS CFMetaData cfm = columnFamily.metadata(); if (cfm.isPurged()) logger.error("Attempted to write commit log entry for unrecognized column family: {}", columnFamily.id()); else ensureAtleast(cfDirty, cfm.cfId, allocatedPosition); } } /** * Marks the ColumnFamily specified by cfId as clean for this log segment. If the * given context argument is contained in this file, it will only mark the CF as * clean if no newer writes have taken place. * * @param cfId the column family ID that is now clean * @param context the optional clean offset */ public synchronized void markClean(UUID cfId, ReplayPosition context) { if (!cfDirty.containsKey(cfId)) return; if (context.segment == id) markClean(cfId, context.position); else if (context.segment > id) markClean(cfId, Integer.MAX_VALUE); } private void markClean(UUID cfId, int position) { ensureAtleast(cfClean, cfId, position); removeCleanFromDirty(); } private static void ensureAtleast(ConcurrentMap<UUID, AtomicInteger> map, UUID cfId, int value) { AtomicInteger i = map.get(cfId); if (i == null) { AtomicInteger i2 = map.putIfAbsent(cfId, i = new AtomicInteger()); if (i2 != null) i = i2; } while (true) { int cur = i.get(); if (cur > value) break; if (i.compareAndSet(cur, value)) break; } } private void removeCleanFromDirty() { // if we're still allocating from this segment, don't touch anything since it can't be done thread-safely if (isStillAllocating()) return; Iterator<Map.Entry<UUID, AtomicInteger>> iter = cfClean.entrySet().iterator(); while (iter.hasNext()) { Map.Entry<UUID, AtomicInteger> clean = iter.next(); UUID cfId = clean.getKey(); AtomicInteger cleanPos = clean.getValue(); AtomicInteger dirtyPos = cfDirty.get(cfId); if (dirtyPos != null && dirtyPos.intValue() <= cleanPos.intValue()) { cfDirty.remove(cfId); iter.remove(); } } } /** * @return a collection of dirty CFIDs for this segment file. */ public synchronized Collection<UUID> getDirtyCFIDs() { if (cfClean.isEmpty() || cfDirty.isEmpty()) return cfDirty.keySet(); List<UUID> r = new ArrayList<>(cfDirty.size()); for (Map.Entry<UUID, AtomicInteger> dirty : cfDirty.entrySet()) { UUID cfId = dirty.getKey(); AtomicInteger dirtyPos = dirty.getValue(); AtomicInteger cleanPos = cfClean.get(cfId); if (cleanPos == null || cleanPos.intValue() < dirtyPos.intValue()) r.add(dirty.getKey()); } return r; } /** * @return true if this segment is unused and safe to recycle or delete */ public synchronized boolean isUnused() { // if room to allocate, we're still in use as the active allocatingFrom, // so we don't want to race with updates to cfClean with removeCleanFromDirty if (isStillAllocating()) return false; removeCleanFromDirty(); return cfDirty.isEmpty(); } /** * Check to see if a certain ReplayPosition is contained by this segment file. * * @param context the replay position to be checked * @return true if the replay position is contained by this segment file. */ public boolean contains(ReplayPosition context) { return context.segment == id; } // For debugging, not fast public String dirtyString() { StringBuilder sb = new StringBuilder(); for (UUID cfId : getDirtyCFIDs()) { CFMetaData m = Schema.instance.getCFMetaData(cfId); sb.append(m == null ? "<deleted>" : m.cfName).append(" (").append(cfId).append("), "); } return sb.toString(); } @Override public String toString() { return "CommitLogSegment(" + getPath() + ')'; } public static class CommitLogSegmentFileComparator implements Comparator<File> { public int compare(File f, File f2) { CommitLogDescriptor desc = CommitLogDescriptor.fromFileName(f.getName()); CommitLogDescriptor desc2 = CommitLogDescriptor.fromFileName(f2.getName()); return Long.compare(desc.id, desc2.id); } } /** * A simple class for tracking information about the portion of a segment that has been allocated to a log write. * The constructor leaves the fields uninitialized for population by CommitlogManager, so that it can be * stack-allocated by escape analysis in CommitLog.add. */ static class Allocation { private final CommitLogSegment segment; private final OpOrder.Group appendOp; private final int position; private final ByteBuffer buffer; Allocation(CommitLogSegment segment, OpOrder.Group appendOp, int position, ByteBuffer buffer) { this.segment = segment; this.appendOp = appendOp; this.position = position; this.buffer = buffer; } CommitLogSegment getSegment() { return segment; } ByteBuffer getBuffer() { return buffer; } // markWritten() MUST be called once we are done with the segment or the CL will never flush // but must not be called more than once void markWritten() { appendOp.close(); } void awaitDiskSync() { while (segment.lastSyncedOffset < position) { WaitQueue.Signal signal = segment.syncComplete.register(CommitLog.instance.metrics.waitingOnCommit.time()); if (segment.lastSyncedOffset < position) signal.awaitUninterruptibly(); else signal.cancel(); } } public ReplayPosition getReplayPosition() { return new ReplayPosition(segment.id, buffer.limit()); } } }