/*
* Licensed to the Ted Dunning under one or more contributor license
* agreements. See the NOTICE file that may be
* distributed with this work for additional information
* regarding copyright ownership. Ted Dunning licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.mapr.synth.samplers;
import com.fasterxml.jackson.databind.JsonNode;
import com.google.common.base.Charsets;
import com.google.common.io.Resources;
import org.apache.commons.math3.distribution.NormalDistribution;
import org.junit.Test;
import java.io.IOException;
import java.util.Arrays;
import java.util.Random;
import static org.junit.Assert.*;
public class VectorSamplerTest {
@Test
public void testVector() throws IOException {
SchemaSampler s = new SchemaSampler(Resources.asCharSource(Resources.getResource("schema029.json"), Charsets.UTF_8).read());
for (int i = 0; i < 10; i++) {
JsonNode data = s.sample();
/*
{
"class": "vector",
"name": "prices",
"mean": 4.65,
"sd": 0.01,
"length": 10000,
"transform": "exp",
"seed": 1,
},
*/
JsonNode v = data.get("prices");
assertTrue(v.isArray());
assertEquals(10000, v.size());
double[] v1 = new double[10000];
double[] v2 = new double[10000];
for (int j = 0; j < 10000; j++) {
v1[j] = v.get(j).asDouble();
v2[j] = Math.log(v1[j]);
}
assertEquals(100, median(v1), 0.03);
assertEquals(100, mean(v1), 0.05);
assertEquals(Math.log(100), mean(v2), 0.001);
assertEquals(0.01, sd(v2), 0.0003);
assertTrue(isNormal(v2, Math.log(100), 0.01));
/*
{
"class": "vector",
"name": "zero",
"mean": 0,
"sd": 10,
"length": 10000,
"seed": 2
},
*/
v = data.get("zero");
assertTrue(v.isArray());
for (int j = 0; j < 10000; j++) {
v1[j] = v.get(j).asDouble();
}
assertEquals(0, mean(v1), 0.3);
assertEquals(10, sd(v1), 0.2);
assertTrue(isNormal(v1, 0, 10));
/*
{
"class": "vector",
"name": "clipped",
"mean": 0,
"sd": 10,
"length": 10000,
"max": 0,
"seed": 3
},
*/
v = data.get("clipped");
assertTrue(v.isArray());
Random rand = new Random();
for (int j = 0; j < 10000; j++) {
v1[j] = v.get(j).asDouble();
assertTrue(v1[j] <= 0);
v1[j] = v1[j] * (rand.nextBoolean() ? 1 : -1);
}
assertEquals(0, mean(v1), 0.3);
assertEquals(10, sd(v1), 0.3);
assertTrue(isNormal(v1, 0, 10));
/*
{
"class": "vector",
"name": "ten",
"min": 1,
"max": 10,
"length": 20000,
"transform": "log",
"seed": 4
}
]
*/
v = data.get("ten");
assertTrue(v.isArray());
for (int j = 0; j < 10000; j++) {
v1[j] = v.get(j).asDouble();
v2[j] = Math.exp(v1[j]);
assertTrue(v1[j] >= 1);
assertTrue(v1[j] <= 10);
}
assertTrue(isUniform(v2, Math.exp(1), Math.exp(10)));
v = data.get("coarse");
assertTrue(v.isArray());
for (int j = 0; j < 10000; j++) {
double x = v.get(j).asDouble();
assertTrue(x >= 1);
assertTrue(x <= 10);
assertEquals(Math.rint(x / 0.1) * 0.1, x, 1e-10);
}
}
}
private boolean isUniform(double[] vx, double min, double max) {
Arrays.sort(vx);
double diff = 0;
for (int i = 0; i < vx.length; i++) {
double q = (double) i / (vx.length - 1);
diff = Math.max(diff, Math.abs(q - (vx[i] - min) / (max - min)));
}
return diff < 5.0 / Math.sqrt(vx.length);
}
private boolean isNormal(double[] vx, double mean, double sd) {
Arrays.sort(vx);
NormalDistribution n = new NormalDistribution(mean, sd);
double diff = 0;
for (int i = 0; i < vx.length; i++) {
double q = (double) i / (vx.length - 1);
diff = Math.max(diff, Math.abs(q - n.cumulativeProbability(vx[i])));
}
return diff < 5.0 / Math.sqrt(vx.length);
}
private double mean(double[] vx) {
double sum = 0;
for (double v : vx) {
sum += v;
}
return sum / vx.length;
}
private double sd(double[] vx) {
double m = mean(vx);
double sum = 0;
for (double v : vx) {
sum += (v - m) * (v - m);
}
return Math.sqrt(sum / (vx.length - 1));
}
private double median(double[] vx) {
Arrays.sort(vx);
int n1 = (vx.length - 1) / 2;
int n2 = vx.length / 2;
return (vx[n1] + vx[n2]) / 2;
}
}