/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.mapred;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.File;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Random;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileUtil;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.SequenceFile.CompressionType;
import org.apache.hadoop.mapred.lib.IdentityMapper;
import org.apache.hadoop.mapred.lib.IdentityReducer;
import org.apache.hadoop.mapreduce.MRConfig;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.junit.After;
import org.junit.Test;
import static org.junit.Assert.assertTrue;
import static org.junit.Assert.assertEquals;
/**********************************************************
* MapredLoadTest generates a bunch of work that exercises
* a Hadoop Map-Reduce system (and DFS, too). It goes through
* the following steps:
*
* 1) Take inputs 'range' and 'counts'.
* 2) Generate 'counts' random integers between 0 and range-1.
* 3) Create a file that lists each integer between 0 and range-1,
* and lists the number of times that integer was generated.
* 4) Emit a (very large) file that contains all the integers
* in the order generated.
* 5) After the file has been generated, read it back and count
* how many times each int was generated.
* 6) Compare this big count-map against the original one. If
* they match, then SUCCESS! Otherwise, FAILURE!
*
* OK, that's how we can think about it. What are the map-reduce
* steps that get the job done?
*
* 1) In a non-mapred thread, take the inputs 'range' and 'counts'.
* 2) In a non-mapread thread, generate the answer-key and write to disk.
* 3) In a mapred job, divide the answer key into K jobs.
* 4) A mapred 'generator' task consists of K map jobs. Each reads
* an individual "sub-key", and generates integers according to
* to it (though with a random ordering).
* 5) The generator's reduce task agglomerates all of those files
* into a single one.
* 6) A mapred 'reader' task consists of M map jobs. The output
* file is cut into M pieces. Each of the M jobs counts the
* individual ints in its chunk and creates a map of all seen ints.
* 7) A mapred job integrates all the count files into a single one.
*
**********************************************************/
public class TestMapRed extends Configured implements Tool {
/**
* Modified to make it a junit test.
* The RandomGen Job does the actual work of creating
* a huge file of assorted numbers. It receives instructions
* as to how many times each number should be counted. Then
* it emits those numbers in a crazy order.
*
* The map() function takes a key/val pair that describes
* a value-to-be-emitted (the key) and how many times it
* should be emitted (the value), aka "numtimes". map() then
* emits a series of intermediate key/val pairs. It emits
* 'numtimes' of these. The key is a random number and the
* value is the 'value-to-be-emitted'.
*
* The system collates and merges these pairs according to
* the random number. reduce() function takes in a key/value
* pair that consists of a crazy random number and a series
* of values that should be emitted. The random number key
* is now dropped, and reduce() emits a pair for every intermediate value.
* The emitted key is an intermediate value. The emitted value
* is just a blank string. Thus, we've created a huge file
* of numbers in random order, but where each number appears
* as many times as we were instructed.
*/
private static final File TEST_DIR = new File(
System.getProperty("test.build.data",
System.getProperty("java.io.tmpdir")), "TestMapRed-mapred");
static class RandomGenMapper
implements Mapper<IntWritable, IntWritable, IntWritable, IntWritable> {
public void configure(JobConf job) {
}
public void map(IntWritable key, IntWritable val,
OutputCollector<IntWritable, IntWritable> out,
Reporter reporter) throws IOException {
int randomVal = key.get();
int randomCount = val.get();
for (int i = 0; i < randomCount; i++) {
out.collect(new IntWritable(Math.abs(r.nextInt())), new IntWritable(randomVal));
}
}
public void close() {
}
}
/**
*/
static class RandomGenReducer
implements Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
public void configure(JobConf job) {
}
public void reduce(IntWritable key, Iterator<IntWritable> it,
OutputCollector<IntWritable, IntWritable> out,
Reporter reporter) throws IOException {
while (it.hasNext()) {
out.collect(it.next(), null);
}
}
public void close() {
}
}
/**
* The RandomCheck Job does a lot of our work. It takes
* in a num/string keyspace, and transforms it into a
* key/count(int) keyspace.
*
* The map() function just emits a num/1 pair for every
* num/string input pair.
*
* The reduce() function sums up all the 1s that were
* emitted for a single key. It then emits the key/total
* pair.
*
* This is used to regenerate the random number "answer key".
* Each key here is a random number, and the count is the
* number of times the number was emitted.
*/
static class RandomCheckMapper
implements Mapper<WritableComparable, Text, IntWritable, IntWritable> {
public void configure(JobConf job) {
}
public void map(WritableComparable key, Text val,
OutputCollector<IntWritable, IntWritable> out,
Reporter reporter) throws IOException {
out.collect(new IntWritable(Integer.parseInt(val.toString().trim())), new IntWritable(1));
}
public void close() {
}
}
/**
*/
static class RandomCheckReducer
implements Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
public void configure(JobConf job) {
}
public void reduce(IntWritable key, Iterator<IntWritable> it,
OutputCollector<IntWritable, IntWritable> out,
Reporter reporter) throws IOException {
int keyint = key.get();
int count = 0;
while (it.hasNext()) {
it.next();
count++;
}
out.collect(new IntWritable(keyint), new IntWritable(count));
}
public void close() {
}
}
/**
* The Merge Job is a really simple one. It takes in
* an int/int key-value set, and emits the same set.
* But it merges identical keys by adding their values.
*
* Thus, the map() function is just the identity function
* and reduce() just sums. Nothing to see here!
*/
static class MergeMapper
implements Mapper<IntWritable, IntWritable, IntWritable, IntWritable> {
public void configure(JobConf job) {
}
public void map(IntWritable key, IntWritable val,
OutputCollector<IntWritable, IntWritable> out,
Reporter reporter) throws IOException {
int keyint = key.get();
int valint = val.get();
out.collect(new IntWritable(keyint), new IntWritable(valint));
}
public void close() {
}
}
static class MergeReducer
implements Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
public void configure(JobConf job) {
}
public void reduce(IntWritable key, Iterator<IntWritable> it,
OutputCollector<IntWritable, IntWritable> out,
Reporter reporter) throws IOException {
int keyint = key.get();
int total = 0;
while (it.hasNext()) {
total += it.next().get();
}
out.collect(new IntWritable(keyint), new IntWritable(total));
}
public void close() {
}
}
private static int range = 10;
private static int counts = 100;
private static Random r = new Random();
@After
public void cleanup() {
FileUtil.fullyDelete(TEST_DIR);
}
/**
public TestMapRed(int range, int counts, Configuration conf) throws IOException {
this.range = range;
this.counts = counts;
this.conf = conf;
}
**/
@Test
public void testMapred() throws Exception {
launch();
}
private static class MyMap
implements Mapper<WritableComparable, Text, Text, Text> {
public void configure(JobConf conf) {
}
public void map(WritableComparable key, Text value,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
String str = StringUtils.toLowerCase(value.toString());
output.collect(new Text(str), value);
}
public void close() throws IOException {
}
}
private static class MyReduce extends IdentityReducer {
private JobConf conf;
private boolean compressInput;
private boolean first = true;
@Override
public void configure(JobConf conf) {
this.conf = conf;
compressInput = conf.getCompressMapOutput();
}
public void reduce(WritableComparable key, Iterator values,
OutputCollector output, Reporter reporter
) throws IOException {
if (first) {
first = false;
MapOutputFile mapOutputFile = new MROutputFiles();
mapOutputFile.setConf(conf);
Path input = mapOutputFile.getInputFile(0);
FileSystem fs = FileSystem.get(conf);
assertTrue("reduce input exists " + input, fs.exists(input));
SequenceFile.Reader rdr =
new SequenceFile.Reader(fs, input, conf);
assertEquals("is reduce input compressed " + input,
compressInput,
rdr.isCompressed());
rdr.close();
}
}
}
public static class NullMapper
implements Mapper<NullWritable,Text,NullWritable,Text> {
public void map(NullWritable key, Text val,
OutputCollector<NullWritable,Text> output, Reporter reporter)
throws IOException {
output.collect(NullWritable.get(), val);
}
public void configure(JobConf conf) { }
public void close() { }
}
@Test
public void testNullKeys() throws Exception {
JobConf conf = new JobConf(TestMapRed.class);
FileSystem fs = FileSystem.getLocal(conf);
HashSet<String> values = new HashSet<String>();
String m = "AAAAAAAAAAAAAA";
for (int i = 1; i < 11; ++i) {
values.add(m);
m = m.replace((char)('A' + i - 1), (char)('A' + i));
}
Path testdir = new Path(
System.getProperty("test.build.data","/tmp")).makeQualified(fs);
fs.delete(testdir, true);
Path inFile = new Path(testdir, "nullin/blah");
SequenceFile.Writer w = SequenceFile.createWriter(fs, conf, inFile,
NullWritable.class, Text.class, SequenceFile.CompressionType.NONE);
Text t = new Text();
for (String s : values) {
t.set(s);
w.append(NullWritable.get(), t);
}
w.close();
FileInputFormat.setInputPaths(conf, inFile);
FileOutputFormat.setOutputPath(conf, new Path(testdir, "nullout"));
conf.setMapperClass(NullMapper.class);
conf.setReducerClass(IdentityReducer.class);
conf.setOutputKeyClass(NullWritable.class);
conf.setOutputValueClass(Text.class);
conf.setInputFormat(SequenceFileInputFormat.class);
conf.setOutputFormat(SequenceFileOutputFormat.class);
conf.setNumReduceTasks(1);
conf.set(MRConfig.FRAMEWORK_NAME, MRConfig.LOCAL_FRAMEWORK_NAME);
JobClient.runJob(conf);
// Since null keys all equal, allow any ordering
SequenceFile.Reader r = new SequenceFile.Reader(fs,
new Path(testdir, "nullout/part-00000"), conf);
m = "AAAAAAAAAAAAAA";
for (int i = 1; r.next(NullWritable.get(), t); ++i) {
assertTrue("Unexpected value: " + t, values.remove(t.toString()));
m = m.replace((char)('A' + i - 1), (char)('A' + i));
}
assertTrue("Missing values: " + values.toString(), values.isEmpty());
}
private void checkCompression(boolean compressMapOutputs,
CompressionType redCompression,
boolean includeCombine
) throws Exception {
JobConf conf = new JobConf(TestMapRed.class);
Path testdir = new Path(TEST_DIR.getAbsolutePath());
Path inDir = new Path(testdir, "in");
Path outDir = new Path(testdir, "out");
FileSystem fs = FileSystem.get(conf);
fs.delete(testdir, true);
FileInputFormat.setInputPaths(conf, inDir);
FileOutputFormat.setOutputPath(conf, outDir);
conf.setMapperClass(MyMap.class);
conf.setReducerClass(MyReduce.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setOutputFormat(SequenceFileOutputFormat.class);
conf.set(MRConfig.FRAMEWORK_NAME, MRConfig.LOCAL_FRAMEWORK_NAME);
if (includeCombine) {
conf.setCombinerClass(IdentityReducer.class);
}
conf.setCompressMapOutput(compressMapOutputs);
SequenceFileOutputFormat.setOutputCompressionType(conf, redCompression);
try {
if (!fs.mkdirs(testdir)) {
throw new IOException("Mkdirs failed to create " + testdir.toString());
}
if (!fs.mkdirs(inDir)) {
throw new IOException("Mkdirs failed to create " + inDir.toString());
}
Path inFile = new Path(inDir, "part0");
DataOutputStream f = fs.create(inFile);
f.writeBytes("Owen was here\n");
f.writeBytes("Hadoop is fun\n");
f.writeBytes("Is this done, yet?\n");
f.close();
RunningJob rj = JobClient.runJob(conf);
assertTrue("job was complete", rj.isComplete());
assertTrue("job was successful", rj.isSuccessful());
Path output = new Path(outDir,
Task.getOutputName(0));
assertTrue("reduce output exists " + output, fs.exists(output));
SequenceFile.Reader rdr =
new SequenceFile.Reader(fs, output, conf);
assertEquals("is reduce output compressed " + output,
redCompression != CompressionType.NONE,
rdr.isCompressed());
rdr.close();
} finally {
fs.delete(testdir, true);
}
}
@Test
public void testCompression() throws Exception {
EnumSet<SequenceFile.CompressionType> seq =
EnumSet.allOf(SequenceFile.CompressionType.class);
for (CompressionType redCompression : seq) {
for(int combine=0; combine < 2; ++combine) {
checkCompression(false, redCompression, combine == 1);
checkCompression(true, redCompression, combine == 1);
}
}
}
/**
*
*/
public void launch() throws Exception {
//
// Generate distribution of ints. This is the answer key.
//
JobConf conf;
//Check to get configuration and check if it is configured thro' Configured
//interface. This would happen when running testcase thro' command line.
if(getConf() == null) {
conf = new JobConf();
} else {
conf = new JobConf(getConf());
}
conf.set(MRConfig.FRAMEWORK_NAME, MRConfig.LOCAL_FRAMEWORK_NAME);
conf.setJarByClass(TestMapRed.class);
int countsToGo = counts;
int dist[] = new int[range];
for (int i = 0; i < range; i++) {
double avgInts = (1.0 * countsToGo) / (range - i);
dist[i] = (int) Math.max(0, Math.round(avgInts + (Math.sqrt(avgInts) * r.nextGaussian())));
countsToGo -= dist[i];
}
if (countsToGo > 0) {
dist[dist.length-1] += countsToGo;
}
//
// Write the answer key to a file.
//
FileSystem fs = FileSystem.get(conf);
Path testdir = new Path(TEST_DIR.getAbsolutePath(), "mapred.loadtest");
if (!fs.mkdirs(testdir)) {
throw new IOException("Mkdirs failed to create " + testdir.toString());
}
Path randomIns = new Path(testdir, "genins");
if (!fs.mkdirs(randomIns)) {
throw new IOException("Mkdirs failed to create " + randomIns.toString());
}
Path answerkey = new Path(randomIns, "answer.key");
SequenceFile.Writer out =
SequenceFile.createWriter(fs, conf, answerkey, IntWritable.class,
IntWritable.class,
SequenceFile.CompressionType.NONE);
try {
for (int i = 0; i < range; i++) {
out.append(new IntWritable(i), new IntWritable(dist[i]));
}
} finally {
out.close();
}
//printFiles(randomIns, conf);
//
// Now we need to generate the random numbers according to
// the above distribution.
//
// We create a lot of map tasks, each of which takes at least
// one "line" of the distribution. (That is, a certain number
// X is to be generated Y number of times.)
//
// A map task emits Y key/val pairs. The val is X. The key
// is a randomly-generated number.
//
// The reduce task gets its input sorted by key. That is, sorted
// in random order. It then emits a single line of text that
// for the given values. It does not emit the key.
//
// Because there's just one reduce task, we emit a single big
// file of random numbers.
//
Path randomOuts = new Path(testdir, "genouts");
fs.delete(randomOuts, true);
JobConf genJob = new JobConf(conf, TestMapRed.class);
FileInputFormat.setInputPaths(genJob, randomIns);
genJob.setInputFormat(SequenceFileInputFormat.class);
genJob.setMapperClass(RandomGenMapper.class);
FileOutputFormat.setOutputPath(genJob, randomOuts);
genJob.setOutputKeyClass(IntWritable.class);
genJob.setOutputValueClass(IntWritable.class);
genJob.setOutputFormat(TextOutputFormat.class);
genJob.setReducerClass(RandomGenReducer.class);
genJob.setNumReduceTasks(1);
JobClient.runJob(genJob);
//printFiles(randomOuts, conf);
//
// Next, we read the big file in and regenerate the
// original map. It's split into a number of parts.
// (That number is 'intermediateReduces'.)
//
// We have many map tasks, each of which read at least one
// of the output numbers. For each number read in, the
// map task emits a key/value pair where the key is the
// number and the value is "1".
//
// We have a single reduce task, which receives its input
// sorted by the key emitted above. For each key, there will
// be a certain number of "1" values. The reduce task sums
// these values to compute how many times the given key was
// emitted.
//
// The reduce task then emits a key/val pair where the key
// is the number in question, and the value is the number of
// times the key was emitted. This is the same format as the
// original answer key (except that numbers emitted zero times
// will not appear in the regenerated key.) The answer set
// is split into a number of pieces. A final MapReduce job
// will merge them.
//
// There's not really a need to go to 10 reduces here
// instead of 1. But we want to test what happens when
// you have multiple reduces at once.
//
int intermediateReduces = 10;
Path intermediateOuts = new Path(testdir, "intermediateouts");
fs.delete(intermediateOuts, true);
JobConf checkJob = new JobConf(conf, TestMapRed.class);
FileInputFormat.setInputPaths(checkJob, randomOuts);
checkJob.setInputFormat(TextInputFormat.class);
checkJob.setMapperClass(RandomCheckMapper.class);
FileOutputFormat.setOutputPath(checkJob, intermediateOuts);
checkJob.setOutputKeyClass(IntWritable.class);
checkJob.setOutputValueClass(IntWritable.class);
checkJob.setOutputFormat(MapFileOutputFormat.class);
checkJob.setReducerClass(RandomCheckReducer.class);
checkJob.setNumReduceTasks(intermediateReduces);
JobClient.runJob(checkJob);
//printFiles(intermediateOuts, conf);
//
// OK, now we take the output from the last job and
// merge it down to a single file. The map() and reduce()
// functions don't really do anything except reemit tuples.
// But by having a single reduce task here, we end up merging
// all the files.
//
Path finalOuts = new Path(testdir, "finalouts");
fs.delete(finalOuts, true);
JobConf mergeJob = new JobConf(conf, TestMapRed.class);
FileInputFormat.setInputPaths(mergeJob, intermediateOuts);
mergeJob.setInputFormat(SequenceFileInputFormat.class);
mergeJob.setMapperClass(MergeMapper.class);
FileOutputFormat.setOutputPath(mergeJob, finalOuts);
mergeJob.setOutputKeyClass(IntWritable.class);
mergeJob.setOutputValueClass(IntWritable.class);
mergeJob.setOutputFormat(SequenceFileOutputFormat.class);
mergeJob.setReducerClass(MergeReducer.class);
mergeJob.setNumReduceTasks(1);
JobClient.runJob(mergeJob);
//printFiles(finalOuts, conf);
//
// Finally, we compare the reconstructed answer key with the
// original one. Remember, we need to ignore zero-count items
// in the original key.
//
boolean success = true;
Path recomputedkey = new Path(finalOuts, "part-00000");
SequenceFile.Reader in = new SequenceFile.Reader(fs, recomputedkey, conf);
int totalseen = 0;
try {
IntWritable key = new IntWritable();
IntWritable val = new IntWritable();
for (int i = 0; i < range; i++) {
if (dist[i] == 0) {
continue;
}
if (!in.next(key, val)) {
System.err.println("Cannot read entry " + i);
success = false;
break;
} else {
if (!((key.get() == i) && (val.get() == dist[i]))) {
System.err.println("Mismatch! Pos=" + key.get() + ", i=" + i +
", val=" + val.get() + ", dist[i]=" + dist[i]);
success = false;
}
totalseen += val.get();
}
}
if (success) {
if (in.next(key, val)) {
System.err.println("Unnecessary lines in recomputed key!");
success = false;
}
}
} finally {
in.close();
}
int originalTotal = 0;
for (int aDist : dist) {
originalTotal += aDist;
}
System.out.println("Original sum: " + originalTotal);
System.out.println("Recomputed sum: " + totalseen);
//
// Write to "results" whether the test succeeded or not.
//
Path resultFile = new Path(testdir, "results");
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(fs.create(resultFile)));
try {
bw.write("Success=" + success + "\n");
System.out.println("Success=" + success);
} finally {
bw.close();
}
assertTrue("testMapRed failed", success);
fs.delete(testdir, true);
}
private static void printTextFile(FileSystem fs, Path p) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(fs.open(p)));
String line;
while ((line = in.readLine()) != null) {
System.out.println(" Row: " + line);
}
in.close();
}
private static void printSequenceFile(FileSystem fs, Path p,
Configuration conf) throws IOException {
SequenceFile.Reader r = new SequenceFile.Reader(fs, p, conf);
Object key = null;
Object value = null;
while ((key = r.next(key)) != null) {
value = r.getCurrentValue(value);
System.out.println(" Row: " + key + ", " + value);
}
r.close();
}
private static boolean isSequenceFile(FileSystem fs,
Path f) throws IOException {
DataInputStream in = fs.open(f);
byte[] seq = "SEQ".getBytes();
for(int i=0; i < seq.length; ++i) {
if (seq[i] != in.read()) {
return false;
}
}
return true;
}
private static void printFiles(Path dir,
Configuration conf) throws IOException {
FileSystem fs = dir.getFileSystem(conf);
for(FileStatus f: fs.listStatus(dir)) {
System.out.println("Reading " + f.getPath() + ": ");
if (f.isDirectory()) {
System.out.println(" it is a map file.");
printSequenceFile(fs, new Path(f.getPath(), "data"), conf);
} else if (isSequenceFile(fs, f.getPath())) {
System.out.println(" it is a sequence file.");
printSequenceFile(fs, f.getPath(), conf);
} else {
System.out.println(" it is a text file.");
printTextFile(fs, f.getPath());
}
}
}
/**
* Launches all the tasks in order.
*/
public static void main(String[] argv) throws Exception {
int res = ToolRunner.run(new TestMapRed(), argv);
System.exit(res);
}
@Test
public void testSmallInput(){
runJob(100);
}
@Test
public void testBiggerInput(){
runJob(1000);
}
public void runJob(int items) {
try {
JobConf conf = new JobConf(TestMapRed.class);
Path testdir = new Path(TEST_DIR.getAbsolutePath());
Path inDir = new Path(testdir, "in");
Path outDir = new Path(testdir, "out");
FileSystem fs = FileSystem.get(conf);
fs.delete(testdir, true);
conf.setInt(JobContext.IO_SORT_MB, 1);
conf.setInputFormat(SequenceFileInputFormat.class);
FileInputFormat.setInputPaths(conf, inDir);
FileOutputFormat.setOutputPath(conf, outDir);
conf.setMapperClass(IdentityMapper.class);
conf.setReducerClass(IdentityReducer.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setOutputFormat(SequenceFileOutputFormat.class);
conf.set(MRConfig.FRAMEWORK_NAME, MRConfig.LOCAL_FRAMEWORK_NAME);
if (!fs.mkdirs(testdir)) {
throw new IOException("Mkdirs failed to create " + testdir.toString());
}
if (!fs.mkdirs(inDir)) {
throw new IOException("Mkdirs failed to create " + inDir.toString());
}
Path inFile = new Path(inDir, "part0");
SequenceFile.Writer writer = SequenceFile.createWriter(fs, conf, inFile,
Text.class, Text.class);
StringBuffer content = new StringBuffer();
for (int i = 0; i < 1000; i++) {
content.append(i).append(": This is one more line of content\n");
}
Text text = new Text(content.toString());
for (int i = 0; i < items; i++) {
writer.append(new Text("rec:" + i), text);
}
writer.close();
JobClient.runJob(conf);
} catch (Exception e) {
assertTrue("Threw exception:" + e,false);
}
}
@Override
public int run(String[] argv) throws Exception {
if (argv.length < 2) {
System.err.println("Usage: TestMapRed <range> <counts>");
System.err.println();
System.err.println("Note: a good test will have a " +
"<counts> value that is substantially larger than the <range>");
return -1;
}
int i = 0;
range = Integer.parseInt(argv[i++]);
counts = Integer.parseInt(argv[i++]);
launch();
return 0;
}
}