/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.optimization; import java.util.Arrays; import java.util.Comparator; import org.apache.commons.math.exception.MathIllegalStateException; import org.apache.commons.math.exception.ConvergenceException; import org.apache.commons.math.exception.MathUserException; import org.apache.commons.math.exception.NullArgumentException; import org.apache.commons.math.exception.NotStrictlyPositiveException; import org.apache.commons.math.analysis.MultivariateVectorialFunction; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.random.RandomVectorGenerator; /** * Base class for all implementations of a multi-start optimizer. * * This interface is mainly intended to enforce the internal coherence of * Commons-Math. Users of the API are advised to base their code on * {@link MultiStartDifferentiableMultivariateVectorialOptimizer}. * * @param <FUNC> Type of the objective function to be optimized. * * @version $Id$ * @since 3.0 */ public class BaseMultiStartMultivariateVectorialOptimizer<FUNC extends MultivariateVectorialFunction> implements BaseMultivariateVectorialOptimizer<FUNC> { /** Underlying classical optimizer. */ private final BaseMultivariateVectorialOptimizer<FUNC> optimizer; /** Maximal number of evaluations allowed. */ private int maxEvaluations; /** Number of evaluations already performed for all starts. */ private int totalEvaluations; /** Number of starts to go. */ private int starts; /** Random generator for multi-start. */ private RandomVectorGenerator generator; /** Found optima. */ private VectorialPointValuePair[] optima; /** * Create a multi-start optimizer from a single-start optimizer. * * @param optimizer Single-start optimizer to wrap. * @param starts Number of starts to perform. If {@code starts == 1}, * the {@link #optimize(int,MultivariateVectorialFunction,double[],double[],double[]) * optimize} will return the same solution as {@code optimizer} would. * @param generator Random vector generator to use for restarts. * @throws NullArgumentException if {@code optimizer} or {@code generator} * is {@code null}. * @throws NotStrictlyPositiveException if {@code starts < 1}. */ protected BaseMultiStartMultivariateVectorialOptimizer(final BaseMultivariateVectorialOptimizer<FUNC> optimizer, final int starts, final RandomVectorGenerator generator) { if (optimizer == null || generator == null) { throw new NullArgumentException(); } if (starts < 1) { throw new NotStrictlyPositiveException(starts); } this.optimizer = optimizer; this.starts = starts; this.generator = generator; } /** * Get all the optima found during the last call to {@link * #optimize(int,MultivariateVectorialFunction,double[],double[],double[]) optimize}. * The optimizer stores all the optima found during a set of * restarts. The {@link #optimize(int,MultivariateVectorialFunction,double[],double[],double[]) * optimize} method returns the best point only. This method * returns all the points found at the end of each starts, including * the best one already returned by the {@link * #optimize(int,MultivariateVectorialFunction,double[],double[],double[]) optimize} method. * <br/> * The returned array as one element for each start as specified * in the constructor. It is ordered with the results from the * runs that did converge first, sorted from best to worst * objective value (i.e. in ascending order if minimizing and in * descending order if maximizing), followed by and null elements * corresponding to the runs that did not converge. This means all * elements will be null if the {@link * #optimize(int,MultivariateVectorialFunction,double[],double[],double[]) optimize} method did * throw a {@link ConvergenceException}). This also means that if * the first element is not {@code null}, it is the best point found * across all starts. * * @return array containing the optima * @throws MathIllegalStateException if {@link * #optimize(int,MultivariateVectorialFunction,double[],double[],double[]) optimize} has not been * called. */ public VectorialPointValuePair[] getOptima() { if (optima == null) { throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET); } return optima.clone(); } /** {@inheritDoc} */ public int getMaxEvaluations() { return maxEvaluations; } /** {@inheritDoc} */ public int getEvaluations() { return totalEvaluations; } /** {@inheritDoc} */ public void setConvergenceChecker(ConvergenceChecker<VectorialPointValuePair> checker) { optimizer.setConvergenceChecker(checker); } /** {@inheritDoc} */ public ConvergenceChecker<VectorialPointValuePair> getConvergenceChecker() { return optimizer.getConvergenceChecker(); } /** * {@inheritDoc} */ public VectorialPointValuePair optimize(int maxEval, final FUNC f, double[] target, double[] weights, double[] startPoint) { maxEvaluations = maxEval; MathUserException lastException = null; optima = new VectorialPointValuePair[starts]; totalEvaluations = 0; // Multi-start loop. for (int i = 0; i < starts; ++i) { try { optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, target, weights, i == 0 ? startPoint : generator.nextVector()); } catch (MathUserException mue) { lastException = mue; optima[i] = null; } catch (ConvergenceException oe) { optima[i] = null; } totalEvaluations += optimizer.getEvaluations(); } sortPairs(target, weights); if (optima[0] == null) { throw lastException; // cannot be null if starts >=1 } // Return the found point given the best objective function value. return optima[0]; } /** * Sort the optima from best to worst, followed by {@code null} elements. * * @param target Target value for the objective functions at optimum. * @param weights Weights for the least-squares cost computation. */ private void sortPairs(final double[] target, final double[] weights) { Arrays.sort(optima, new Comparator<VectorialPointValuePair>() { public int compare(final VectorialPointValuePair o1, final VectorialPointValuePair o2) { if (o1 == null) { return (o2 == null) ? 0 : 1; } else if (o2 == null) { return -1; } return Double.compare(weightedResidual(o1), weightedResidual(o2)); } private double weightedResidual(final VectorialPointValuePair pv) { final double[] value = pv.getValueRef(); double sum = 0; for (int i = 0; i < value.length; ++i) { final double ri = value[i] - target[i]; sum += weights[i] * ri * ri; } return sum; } }); } }