/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.distribution;
import java.io.Serializable;
import org.apache.commons.math.MathException;
import org.apache.commons.math.exception.OutOfRangeException;
import org.apache.commons.math.exception.NotPositiveException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.special.Beta;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.FastMath;
/**
* The default implementation of {@link PascalDistribution}.
* @version $Id: PascalDistributionImpl.java 1131229 2011-06-03 20:49:25Z luc $
* @since 1.2
*/
public class PascalDistributionImpl extends AbstractIntegerDistribution
implements PascalDistribution, Serializable {
/** Serializable version identifier. */
private static final long serialVersionUID = 6751309484392813623L;
/** The number of successes. */
private final int numberOfSuccesses;
/** The probability of success. */
private final double probabilityOfSuccess;
/**
* Create a Pascal distribution with the given number of trials and
* probability of success.
*
* @param r Number of successes.
* @param p Probability of success.
*/
public PascalDistributionImpl(int r, double p) {
if (r < 0) {
throw new NotPositiveException(LocalizedFormats.NUMBER_OF_SUCCESSES,
r);
}
if (p < 0 || p > 1) {
throw new OutOfRangeException(p, 0, 1);
}
numberOfSuccesses = r;
probabilityOfSuccess = p;
}
/**
* {@inheritDoc}
*/
public int getNumberOfSuccesses() {
return numberOfSuccesses;
}
/**
* {@inheritDoc}
*/
public double getProbabilityOfSuccess() {
return probabilityOfSuccess;
}
/**
* Access the domain value lower bound, based on {@code p}, used to
* bracket a PDF root.
*
* @param p Desired probability for the critical value.
* @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}.
*/
@Override
protected int getDomainLowerBound(double p) {
return -1;
}
/**
* Access the domain value upper bound, based on {@code p}, used to
* bracket a PDF root.
*
* @param p Desired probability for the critical value
* @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}.
*/
@Override
protected int getDomainUpperBound(double p) {
// use MAX - 1 because MAX causes loop
return Integer.MAX_VALUE - 1;
}
/**
* For this distribution, {@code X}, this method returns {@code P(X < x)}.
*
* @param x Value at which the PDF is evaluated.
* @return PDF for this distribution.
* @throws MathException if the cumulative probability can not be computed
* due to convergence or other numerical errors.
*/
@Override
public double cumulativeProbability(int x) throws MathException {
double ret;
if (x < 0) {
ret = 0.0;
} else {
ret = Beta.regularizedBeta(probabilityOfSuccess,
numberOfSuccesses, x + 1);
}
return ret;
}
/**
* For this distribution, {@code X}, this method returns {@code P(X = x)}.
*
* @param x Value at which the PMF is evaluated.
* @return PMF for this distribution.
*/
public double probability(int x) {
double ret;
if (x < 0) {
ret = 0.0;
} else {
ret = MathUtils.binomialCoefficientDouble(x +
numberOfSuccesses - 1, numberOfSuccesses - 1) *
FastMath.pow(probabilityOfSuccess, numberOfSuccesses) *
FastMath.pow(1.0 - probabilityOfSuccess, x);
}
return ret;
}
/**
* For this distribution, {@code X}, this method returns the largest
* {@code x}, such that {@code P(X < x) p}.
* It will return -1 when p = 0 and {@code Integer.MAX_VALUE} when p = 1.
*
* @param p Desired probability.
* @return the largest {@code x} such that {@code P(X < x) <= p}.
* @throws MathException if the inverse cumulative probability can not be
* computed due to convergence or other numerical errors.
* @throws OutOfRangeException if {@code p < 0} or {@code p > 1}.
*/
@Override
public int inverseCumulativeProbability(final double p)
throws MathException {
int ret;
// handle extreme values explicitly
if (p == 0) {
ret = -1;
} else if (p == 1) {
ret = Integer.MAX_VALUE;
} else {
ret = super.inverseCumulativeProbability(p);
}
return ret;
}
/**
* {@inheritDoc}
*
* The lower bound of the support is always 0 no matter the parameters.
*
* @return lower bound of the support (always 0)
*/
@Override
public int getSupportLowerBound() {
return 0;
}
/**
* {@inheritDoc}
*
* The upper bound of the support is always positive infinity
* no matter the parameters. Positive infinity is symbolised
* by <code>Integer.MAX_VALUE</code> together with
* {@link #isSupportUpperBoundInclusive()} being <code>false</code>
*
* @return upper bound of the support (always <code>Integer.MAX_VALUE</code> for positive infinity)
*/
@Override
public int getSupportUpperBound() {
return Integer.MAX_VALUE;
}
/**
* {@inheritDoc}
*
* For number of successes <code>r</code> and
* probability of success <code>p</code>, the mean is
* <code>( r * p ) / ( 1 - p )</code>
*
* @return {@inheritDoc}
*/
@Override
protected double calculateNumericalMean() {
final double p = getProbabilityOfSuccess();
final double r = getNumberOfSuccesses();
return ( r * p ) / ( 1 - p );
}
/**
* {@inheritDoc}
*
* For number of successes <code>r</code> and
* probability of success <code>p</code>, the mean is
* <code>( r * p ) / ( 1 - p )^2</code>
*
* @return {@inheritDoc}
*/
@Override
protected double calculateNumericalVariance() {
final double p = getProbabilityOfSuccess();
final double r = getNumberOfSuccesses();
final double pInv = 1 - p;
return ( r * p ) / (pInv * pInv);
}
/**
* {@inheritDoc}
*/
@Override
public boolean isSupportUpperBoundInclusive() {
return false;
}
}