/* * Sifarish: Recommendation Engine * Author: Pranab Ghosh * * Licensed under the Apache License, Version 2.0 (the "License"); you * may not use this file except in compliance with the License. You may * obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. See the License for the specific language governing * permissions and limitations under the License. */ package org.sifarish.common; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import org.chombo.util.SecondarySort; import org.chombo.util.Tuple; import org.chombo.util.Utility; /** * Blends implict rating based on click stream, explicit rating and rating from * CRM or customer service system to derive an aggregated rating based on weighted average * @author pranab * */ public class RatingBlender extends Configured implements Tool{ private static final int NUM_RATING_SOURCE = 3; @Override public int run(String[] args) throws Exception { Job job = new Job(getConf()); String jobName = "Rating blender MR"; job.setJobName(jobName); job.setJarByClass(RatingBlender.class); FileInputFormat.addInputPaths(job, args[0]); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(RatingBlender.RatingBlenderlMapper.class); job.setReducerClass(RatingBlender.RatingBlenderReducer.class); job.setMapOutputKeyClass(Tuple.class); job.setMapOutputValueClass(Tuple.class); job.setOutputKeyClass(NullWritable.class); job.setOutputValueClass(Text.class); job.setGroupingComparatorClass(SecondarySort.TuplePairGroupComprator.class); job.setPartitionerClass(SecondarySort.TuplePairPartitioner.class); Utility.setConfiguration(job.getConfiguration()); int numReducer = job.getConfiguration().getInt("rab.num.reducer", -1); numReducer = -1 == numReducer ? job.getConfiguration().getInt("num.reducer", 1) : numReducer; job.setNumReduceTasks(numReducer); int status = job.waitForCompletion(true) ? 0 : 1; return status; } /** * @author pranab * */ public static class RatingBlenderlMapper extends Mapper<LongWritable, Text, Tuple, Tuple> { private String fieldDelim; private Tuple keyOut = new Tuple(); private Tuple valOut = new Tuple(); private boolean isExplicitRatingFileSplit; private boolean isCustSvcRatingFileSplit; private String userID; private String itemID; private int rating ; private long timeStamp; /* (non-Javadoc) * @see org.apache.hadoop.mapreduce.Mapper#setup(org.apache.hadoop.mapreduce.Mapper.Context) */ protected void setup(Context context) throws IOException, InterruptedException { fieldDelim = context.getConfiguration().get("field.delim", ","); String explicitRatingFilePrefix = context.getConfiguration().get("rab.explicit.rating.file.prefix", "expl"); String custSvcRatingFilePrefix = context.getConfiguration().get("rab.custsvc.rating.file.prefix", "cust"); String splitName = ((FileSplit)context.getInputSplit()).getPath().getName(); isExplicitRatingFileSplit = splitName.startsWith(explicitRatingFilePrefix); isCustSvcRatingFileSplit = splitName.startsWith(custSvcRatingFilePrefix); } /* (non-Javadoc) * @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.Mapper.Context) */ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] items = value.toString().split(fieldDelim); userID = items[0]; itemID = items[1]; rating = Integer.parseInt(items[2]); timeStamp = Long.parseLong(items[3]); keyOut.initialize(); valOut.initialize(); if (isExplicitRatingFileSplit) { setKeyValue(1); } else if (isCustSvcRatingFileSplit) { setKeyValue(2); } else { setKeyValue(0); } context.write(keyOut, valOut); } /** * Sets key and value * @param secodaryKey */ private void setKeyValue(int secodaryKey) { //userID, item ID keyOut.add(userID, itemID, secodaryKey); //rating valOut.add(secodaryKey, rating, timeStamp); } } /** * @author pranab * */ public static class RatingBlenderReducer extends Reducer<Tuple, Tuple, NullWritable, Text> { private String fieldDelim; private Text valOut = new Text(); private int[] ratingWeightList; private String userID; private String itemID; private int rating; private int ratingSum; private int weightSum; private long timeStamp ; private int[] ratingSource = new int[3]; private long[] ratingTimeStamp = new long[3]; private String explicitRatingOverride; private static final int IMPLICIT_RATING = 0; private static final int EXPLICIT_RATING = 1; private static final int CUST_SVC_RATING = 2; /* (non-Javadoc) * @see org.apache.hadoop.mapreduce.Reducer#setup(org.apache.hadoop.mapreduce.Reducer.Context) */ protected void setup(Context context) throws IOException, InterruptedException { Configuration config = context.getConfiguration(); fieldDelim = config.get("field.delim", ","); ratingWeightList = Utility.intArrayFromString(config.get("rab.rating.weights"),fieldDelim ); if ((ratingWeightList[0] + ratingWeightList[1] + ratingWeightList[2]) != 100) { throw new IllegalArgumentException("rating weights are not normalized"); } explicitRatingOverride = config.get("rab.explicit.rating.override", "none"); } /* (non-Javadoc) * @see org.apache.hadoop.mapreduce.Reducer#reduce(KEYIN, java.lang.Iterable, org.apache.hadoop.mapreduce.Reducer.Context) */ protected void reduce(Tuple key, Iterable<Tuple> values, Context context) throws IOException, InterruptedException { userID = key.getString(0); itemID = key.getString(1); for (int i = 0; i < NUM_RATING_SOURCE; ++i) { ratingSource[i] = 0; ratingTimeStamp[i] = 0; } for(Tuple value : values) { ratingSource[value.getInt(0)] = value.getInt(1); ratingTimeStamp[value.getInt(0)] = value.getLong(2); } //aggregate rating if (!explicitRatingOverride.equals("none")) { //time stamp based explicit rating override for (int i = 0; i < NUM_RATING_SOURCE; ++i) { if (i == 0) { rating = ratingSource[i]; timeStamp = ratingTimeStamp[i]; } else { if (ratingSource[i] > 0) { if (explicitRatingOverride.equals("timeStampBased")) { //time stamp based explicit rating override if (ratingTimeStamp[i] > timeStamp) { rating = ratingSource[i]; timeStamp = ratingTimeStamp[i]; context.getCounter("Blended rating","timeStampBasedOverride").increment(1); } } else { //explicit supersede if (i == 1 && explicitRatingOverride.equals("supersedeExplicit") || i == 2 && explicitRatingOverride.equals("supersedeCustSvc")) { rating = ratingSource[i]; timeStamp = ratingTimeStamp[i]; context.getCounter("Blended rating","explicitOverride").increment(1); } } } } } } else { //weighted average ratingSum = 0; weightSum = 0; for (int i = 0; i < NUM_RATING_SOURCE; ++i) { if (ratingSource[i] > 0) { ratingSum += ratingSource[i] * ratingWeightList[i]; weightSum += ratingWeightList[i]; if (i == 0) { timeStamp = ratingTimeStamp[i]; } else if (ratingTimeStamp[i] > timeStamp) { timeStamp = ratingTimeStamp[i]; } } } rating = ratingSum / weightSum; } valOut.set(userID + fieldDelim + itemID + fieldDelim + rating + fieldDelim + timeStamp); context.write(NullWritable.get(), valOut); } } /** * @param args * @throws Exception */ public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run(new RatingBlender(), args); System.exit(exitCode); } }