/*******************************************************************************
* Mission Control Technologies, Copyright (c) 2009-2012, United States Government
* as represented by the Administrator of the National Aeronautics and Space
* Administration. All rights reserved.
*
* The MCT platform is licensed under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*
* MCT includes source code licensed under additional open source licenses. See
* the MCT Open Source Licenses file included with this distribution or the About
* MCT Licenses dialog available at runtime from the MCT Help menu for additional
* information.
*******************************************************************************/
package gov.nasa.arc.mct.table.model;
import gov.nasa.arc.mct.table.utils.StringUtils;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.regex.Pattern;
/**
* Implements a table labeling algorithm that tries to abbreviate row,
* column, and cell labels based on not repeating words that appear in
* other labels.
*/
public class AbbreviatingTableLabelingAlgorithm extends TableLabelingAlgorithm {
private static final Set<String> EMPTY_WORD_SET = new HashSet<String>();
/**
* The regular expression defining the delimiter pattern between words.
* Words are delimited by a sequence of one or more spaces or underscores.
*/
private static final String WORD_DELIMITERS = "[ _]+";
/**
* The compiled regular expression defining the delimiter pattern between
* words.
*/
private static final Pattern WORD_DELIMITER_PATTERN = Pattern.compile(WORD_DELIMITERS);
/**
* The separator to use when concatenating words together to form labels.
*/
private static final String WORD_SEPARATOR = " ";
/** The labels from the surrounding context. Words from those labels
* will never appear in the resulting row, column, or cell labels.
*/
private List<String> globalContextLabels = new ArrayList<String>();
private Set<String> globalContextWords = new HashSet<String>();
/**
* Creates a new instance of the labeling algorithm.
*/
public AbbreviatingTableLabelingAlgorithm() {
super(TableOrientation.ROW_MAJOR);
}
@Override
public void computeLabels(LabeledTableModel model) {
Set<String> commonContextWords;
if (model.getRowCount()==1 && model.getColumnCount() > 1) {
commonContextWords = computeLabelsRowMajor(model);
} else if (model.getRowCount() > 1 && model.getColumnCount()==1) {
commonContextWords = computeLabelsColumnMajor(model);
} else if (getOrientation() == TableOrientation.ROW_MAJOR) {
commonContextWords = computeLabelsRowMajor(model);
} else {
commonContextWords = computeLabelsColumnMajor(model);
}
computeCellLabels(model, commonContextWords);
}
/**
* Computes the row and column labels in row-major order. That is,
* the row labels are computed first, then the column labels. This means
* that any words used in the row labels will not be present in the
* column labels. Calculates and return the set of words from the surrounding
* context that are common with all cells.
*
* @param model the table label model
* @return the set of words from the surrounding context that are common among all cells
*/
private Set<String> computeLabelsRowMajor(LabeledTableModel model) {
Set<String>commonContextWords = new HashSet<String>(globalContextWords);
Set<String> contextLabelWords = new HashSet<String>();
List<List<String>> rowLabels = new ArrayList<List<String>>();
for (int row=0; row < model.getRowCount(); ++row) {
List<String> rowLabel = computeLabel(getRowIdentifiers(row, model), EMPTY_WORD_SET);
rowLabels.add(rowLabel);
contextLabelWords.addAll(rowLabel);
commonContextWords.retainAll(rowLabel);
}
for (int row=0; row < model.getRowCount(); ++row) {
// Only remove context from the labels if the table isn't a single cell.
if (model.getRowCount() > 1 || model.getColumnCount() > 1) {
rowLabels.get(row).removeAll(commonContextWords);
}
model.setRowName(row, StringUtils.join(rowLabels.get(row), WORD_SEPARATOR));
}
contextLabelWords.addAll(commonContextWords);
for (int col=0; col < model.getColumnCount(); ++col) {
List<String> colLabel = computeLabel(getColumnIdentifiers(col, model), contextLabelWords);
model.setColumnName(col, StringUtils.join(colLabel, WORD_SEPARATOR));
}
return commonContextWords;
}
/**
* Computes the row and column labels in column-major order. That is,
* the column labels are computed first, then the row labels. This means
* that any words used in the column labels will not be present in the
* row labels. Calculates and return the set of words from the surrounding
* context that are common with all cells.
*
* @param model the table label model
* @return the set of words from the surrounding context that are common among all cells
*/
private Set<String> computeLabelsColumnMajor(LabeledTableModel model) {
Set<String>commonContextWords = new HashSet<String>(globalContextWords);
Set<String> contextLabelWords = new HashSet<String>();
List<List<String>> colLabels = new ArrayList<List<String>>();
for (int col=0; col < model.getColumnCount(); ++col) {
List<String> colLabel = computeLabel(getColumnIdentifiers(col, model), EMPTY_WORD_SET);
colLabels.add(colLabel);
contextLabelWords.addAll(colLabel);
commonContextWords.retainAll(colLabel);
}
for (int col=0; col < model.getColumnCount(); ++col) {
// Only remove context from the labels if the table isn't a single cell.
if (model.getRowCount() > 1 || model.getColumnCount() > 1) {
colLabels.get(col).removeAll(commonContextWords);
}
model.setColumnName(col, StringUtils.join(colLabels.get(col), WORD_SEPARATOR));
}
contextLabelWords.addAll(commonContextWords);
for (int row=0; row < model.getRowCount(); ++row) {
List<String> rowLabel = computeLabel(getRowIdentifiers(row, model), contextLabelWords);
model.setRowName(row, StringUtils.join(rowLabel, WORD_SEPARATOR));
}
return commonContextWords;
}
/**
* Gets the cell identifiers for an entire row, as a list.
*
* @param row the row for which to get the cell identifiers
* @param model the table labeling model
* @return a list of cell identifiers for the row
*/
List<String> getRowIdentifiers(int row, LabeledTableModel model) {
List<String> identifiers = new ArrayList<String>();
for (int col=0; col < model.getColumnCount(); ++col) {
String identifier = model.getIdentifierAt(row, col);
if (identifier!=null && !identifier.isEmpty()) {
identifiers.add(identifier);
}
}
return identifiers;
}
/**
* Gets the cell identifiers for an entire column, as a list.
*
* @param col the column for which to get the cell identifiers
* @param model the table labeling model
* @return a list of cell identifiers for the column
*/
List<String> getColumnIdentifiers(int col, LabeledTableModel model) {
List<String> identifiers = new ArrayList<String>();
for (int row=0; row < model.getRowCount(); ++row) {
String identifier = model.getIdentifierAt(row, col);
if (identifier!=null && !identifier.isEmpty()) {
identifiers.add(identifier);
}
}
return identifiers;
}
/**
* Computes a label for a row or column with a set of cell identifiers.
* The resulting label should have all words that are common among the
* cells, excluding any words that are in the surrounding context labels.
* Labels from the surrounding context could be from an existing
* row or column label or from a surrounding panel or window, for example.
*
* @param identifiers the cell identifiers for the row or column
* @param contextWords the words to remove because they exist in the surrounding context
* @return the sequence of words for the label of the row or column
*/
private List<String> computeLabel(List<String> identifiers, Set<String> contextWords) {
List<String> labelWords = null;
for (int i=0; i < identifiers.size(); ++i) {
List<String> cellLabelWords = StringUtils.split(identifiers.get(i), WORD_DELIMITER_PATTERN);
if (cellLabelWords.size() > 0) {
if (labelWords == null) {
labelWords = cellLabelWords;
} else {
labelWords.retainAll(cellLabelWords);
}
}
}
if (labelWords == null) {
return new ArrayList<String>();
} else {
labelWords.removeAll(contextWords);
return labelWords;
}
}
/**
* Calculates the labels for each cell in the table.
*
* @param model the table label model
* @param contextWords the words from surrounding context that should not appear in the cell labels
*/
void computeCellLabels(LabeledTableModel model, Set<String> contextWords) {
for (int row=0; row < model.getRowCount(); ++row) {
for (int col=0; col < model.getColumnCount(); ++col) {
String identifier = model.getIdentifierAt(row, col);
String rowLabel = model.getFullRowName(row);
String colLabel = model.getFullColumnName(col);
model.setCellName(row, col, computeCellLabel(identifier, rowLabel, colLabel, contextWords));
}
}
}
/**
* Calculates the label for a single cell. The cell label is
* the words in the identifier for the cell, minus any words
* that appear in the row and column labels associated with
* the cell.
*
* @param identifier the cell identifier
* @param rowLabel the label for the row containing the cell
* @param colLabel the label for the column containing the cell
* @param contextWords any words from surrounding context labels that should be removed
* @return
*/
String computeCellLabel(String identifier, String rowLabel, String colLabel, Set<String> contextWords) {
if (identifier == null) {
return "";
}
List<String> labelWords = StringUtils.split(identifier, WORD_DELIMITER_PATTERN);
labelWords.removeAll(StringUtils.split(rowLabel, WORD_DELIMITER_PATTERN));
labelWords.removeAll(StringUtils.split(colLabel, WORD_DELIMITER_PATTERN));
labelWords.removeAll(contextWords);
return StringUtils.join(labelWords, WORD_SEPARATOR);
}
/** The array return type of {@link #getContextLabels()}, used to
* convert a list into an array.
*/
private static final String[] CONTEXT_LABEL_ARRAY_TYPE = new String[0];
/**
* Gets the labels describing the surrounding context of the table.
* The words in these labels will be stripped during the label
* computation, so that they never appear as row, column, nor cell
* labels.
*
* @return an array containing the context labels, which may be empty
*/
public String[] getContextLabels() {
return globalContextLabels.toArray(CONTEXT_LABEL_ARRAY_TYPE);
}
/**
* Sets the labels describing the surrounding context of the table.
* The words in these labels will be stripped during the label
* computation, so that they never appear as row, column, nor cell
* labels.
*
* @param labels zero or more labels from the surrounding context
*/
public void setContextLabels(String... labels) {
globalContextLabels.clear();
globalContextLabels.addAll(Arrays.asList(labels));
globalContextWords.clear();
for (String label : labels) {
globalContextWords.addAll(Arrays.asList(label.split(WORD_DELIMITERS)));
}
}
}