/******************************************************************************* * Mission Control Technologies, Copyright (c) 2009-2012, United States Government * as represented by the Administrator of the National Aeronautics and Space * Administration. All rights reserved. * * The MCT platform is licensed under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * http://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. * * MCT includes source code licensed under additional open source licenses. See * the MCT Open Source Licenses file included with this distribution or the About * MCT Licenses dialog available at runtime from the MCT Help menu for additional * information. *******************************************************************************/ package gov.nasa.arc.mct.table.model; import gov.nasa.arc.mct.table.utils.StringUtils; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.List; import java.util.Set; import java.util.regex.Pattern; /** * Implements a table labeling algorithm that tries to abbreviate row, * column, and cell labels based on not repeating words that appear in * other labels. */ public class AbbreviatingTableLabelingAlgorithm extends TableLabelingAlgorithm { private static final Set<String> EMPTY_WORD_SET = new HashSet<String>(); /** * The regular expression defining the delimiter pattern between words. * Words are delimited by a sequence of one or more spaces or underscores. */ private static final String WORD_DELIMITERS = "[ _]+"; /** * The compiled regular expression defining the delimiter pattern between * words. */ private static final Pattern WORD_DELIMITER_PATTERN = Pattern.compile(WORD_DELIMITERS); /** * The separator to use when concatenating words together to form labels. */ private static final String WORD_SEPARATOR = " "; /** The labels from the surrounding context. Words from those labels * will never appear in the resulting row, column, or cell labels. */ private List<String> globalContextLabels = new ArrayList<String>(); private Set<String> globalContextWords = new HashSet<String>(); /** * Creates a new instance of the labeling algorithm. */ public AbbreviatingTableLabelingAlgorithm() { super(TableOrientation.ROW_MAJOR); } @Override public void computeLabels(LabeledTableModel model) { Set<String> commonContextWords; if (model.getRowCount()==1 && model.getColumnCount() > 1) { commonContextWords = computeLabelsRowMajor(model); } else if (model.getRowCount() > 1 && model.getColumnCount()==1) { commonContextWords = computeLabelsColumnMajor(model); } else if (getOrientation() == TableOrientation.ROW_MAJOR) { commonContextWords = computeLabelsRowMajor(model); } else { commonContextWords = computeLabelsColumnMajor(model); } computeCellLabels(model, commonContextWords); } /** * Computes the row and column labels in row-major order. That is, * the row labels are computed first, then the column labels. This means * that any words used in the row labels will not be present in the * column labels. Calculates and return the set of words from the surrounding * context that are common with all cells. * * @param model the table label model * @return the set of words from the surrounding context that are common among all cells */ private Set<String> computeLabelsRowMajor(LabeledTableModel model) { Set<String>commonContextWords = new HashSet<String>(globalContextWords); Set<String> contextLabelWords = new HashSet<String>(); List<List<String>> rowLabels = new ArrayList<List<String>>(); for (int row=0; row < model.getRowCount(); ++row) { List<String> rowLabel = computeLabel(getRowIdentifiers(row, model), EMPTY_WORD_SET); rowLabels.add(rowLabel); contextLabelWords.addAll(rowLabel); commonContextWords.retainAll(rowLabel); } for (int row=0; row < model.getRowCount(); ++row) { // Only remove context from the labels if the table isn't a single cell. if (model.getRowCount() > 1 || model.getColumnCount() > 1) { rowLabels.get(row).removeAll(commonContextWords); } model.setRowName(row, StringUtils.join(rowLabels.get(row), WORD_SEPARATOR)); } contextLabelWords.addAll(commonContextWords); for (int col=0; col < model.getColumnCount(); ++col) { List<String> colLabel = computeLabel(getColumnIdentifiers(col, model), contextLabelWords); model.setColumnName(col, StringUtils.join(colLabel, WORD_SEPARATOR)); } return commonContextWords; } /** * Computes the row and column labels in column-major order. That is, * the column labels are computed first, then the row labels. This means * that any words used in the column labels will not be present in the * row labels. Calculates and return the set of words from the surrounding * context that are common with all cells. * * @param model the table label model * @return the set of words from the surrounding context that are common among all cells */ private Set<String> computeLabelsColumnMajor(LabeledTableModel model) { Set<String>commonContextWords = new HashSet<String>(globalContextWords); Set<String> contextLabelWords = new HashSet<String>(); List<List<String>> colLabels = new ArrayList<List<String>>(); for (int col=0; col < model.getColumnCount(); ++col) { List<String> colLabel = computeLabel(getColumnIdentifiers(col, model), EMPTY_WORD_SET); colLabels.add(colLabel); contextLabelWords.addAll(colLabel); commonContextWords.retainAll(colLabel); } for (int col=0; col < model.getColumnCount(); ++col) { // Only remove context from the labels if the table isn't a single cell. if (model.getRowCount() > 1 || model.getColumnCount() > 1) { colLabels.get(col).removeAll(commonContextWords); } model.setColumnName(col, StringUtils.join(colLabels.get(col), WORD_SEPARATOR)); } contextLabelWords.addAll(commonContextWords); for (int row=0; row < model.getRowCount(); ++row) { List<String> rowLabel = computeLabel(getRowIdentifiers(row, model), contextLabelWords); model.setRowName(row, StringUtils.join(rowLabel, WORD_SEPARATOR)); } return commonContextWords; } /** * Gets the cell identifiers for an entire row, as a list. * * @param row the row for which to get the cell identifiers * @param model the table labeling model * @return a list of cell identifiers for the row */ List<String> getRowIdentifiers(int row, LabeledTableModel model) { List<String> identifiers = new ArrayList<String>(); for (int col=0; col < model.getColumnCount(); ++col) { String identifier = model.getIdentifierAt(row, col); if (identifier!=null && !identifier.isEmpty()) { identifiers.add(identifier); } } return identifiers; } /** * Gets the cell identifiers for an entire column, as a list. * * @param col the column for which to get the cell identifiers * @param model the table labeling model * @return a list of cell identifiers for the column */ List<String> getColumnIdentifiers(int col, LabeledTableModel model) { List<String> identifiers = new ArrayList<String>(); for (int row=0; row < model.getRowCount(); ++row) { String identifier = model.getIdentifierAt(row, col); if (identifier!=null && !identifier.isEmpty()) { identifiers.add(identifier); } } return identifiers; } /** * Computes a label for a row or column with a set of cell identifiers. * The resulting label should have all words that are common among the * cells, excluding any words that are in the surrounding context labels. * Labels from the surrounding context could be from an existing * row or column label or from a surrounding panel or window, for example. * * @param identifiers the cell identifiers for the row or column * @param contextWords the words to remove because they exist in the surrounding context * @return the sequence of words for the label of the row or column */ private List<String> computeLabel(List<String> identifiers, Set<String> contextWords) { List<String> labelWords = null; for (int i=0; i < identifiers.size(); ++i) { List<String> cellLabelWords = StringUtils.split(identifiers.get(i), WORD_DELIMITER_PATTERN); if (cellLabelWords.size() > 0) { if (labelWords == null) { labelWords = cellLabelWords; } else { labelWords.retainAll(cellLabelWords); } } } if (labelWords == null) { return new ArrayList<String>(); } else { labelWords.removeAll(contextWords); return labelWords; } } /** * Calculates the labels for each cell in the table. * * @param model the table label model * @param contextWords the words from surrounding context that should not appear in the cell labels */ void computeCellLabels(LabeledTableModel model, Set<String> contextWords) { for (int row=0; row < model.getRowCount(); ++row) { for (int col=0; col < model.getColumnCount(); ++col) { String identifier = model.getIdentifierAt(row, col); String rowLabel = model.getFullRowName(row); String colLabel = model.getFullColumnName(col); model.setCellName(row, col, computeCellLabel(identifier, rowLabel, colLabel, contextWords)); } } } /** * Calculates the label for a single cell. The cell label is * the words in the identifier for the cell, minus any words * that appear in the row and column labels associated with * the cell. * * @param identifier the cell identifier * @param rowLabel the label for the row containing the cell * @param colLabel the label for the column containing the cell * @param contextWords any words from surrounding context labels that should be removed * @return */ String computeCellLabel(String identifier, String rowLabel, String colLabel, Set<String> contextWords) { if (identifier == null) { return ""; } List<String> labelWords = StringUtils.split(identifier, WORD_DELIMITER_PATTERN); labelWords.removeAll(StringUtils.split(rowLabel, WORD_DELIMITER_PATTERN)); labelWords.removeAll(StringUtils.split(colLabel, WORD_DELIMITER_PATTERN)); labelWords.removeAll(contextWords); return StringUtils.join(labelWords, WORD_SEPARATOR); } /** The array return type of {@link #getContextLabels()}, used to * convert a list into an array. */ private static final String[] CONTEXT_LABEL_ARRAY_TYPE = new String[0]; /** * Gets the labels describing the surrounding context of the table. * The words in these labels will be stripped during the label * computation, so that they never appear as row, column, nor cell * labels. * * @return an array containing the context labels, which may be empty */ public String[] getContextLabels() { return globalContextLabels.toArray(CONTEXT_LABEL_ARRAY_TYPE); } /** * Sets the labels describing the surrounding context of the table. * The words in these labels will be stripped during the label * computation, so that they never appear as row, column, nor cell * labels. * * @param labels zero or more labels from the surrounding context */ public void setContextLabels(String... labels) { globalContextLabels.clear(); globalContextLabels.addAll(Arrays.asList(labels)); globalContextWords.clear(); for (String label : labels) { globalContextWords.addAll(Arrays.asList(label.split(WORD_DELIMITERS))); } } }