package com.devicehive.shim.kafka.client;
/*
* #%L
* DeviceHive Shim Kafka Implementation
* %%
* Copyright (C) 2016 DataArt
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
import com.devicehive.shim.api.Response;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ForkJoinPool;
import java.util.function.Consumer;
public class RequestResponseMatcher {
private final ConcurrentHashMap<String, Consumer<Response>> correlationMap = new ConcurrentHashMap<>();
//TODO [rafa] we do not really need FJP, but rather some other pool implementation. Though FJP looks good, it might be over kill for our use case.
private final ForkJoinPool executionPool = new ForkJoinPool();
void addRequestCallback(String correlationId, Consumer<Response> callback) {
correlationMap.put(correlationId, callback);
}
void removeRequestCallback(String correlationId) {
correlationMap.remove(correlationId);
}
void offerResponse(Response response) {
Consumer<Response> callback = correlationMap.get(response.getCorrelationId());
if (callback != null) {
executionPool.execute(() -> {
try {
callback.accept(response);
} finally {
if (response.isLast()) {
correlationMap.remove(response.getCorrelationId());
}
}
});
}
}
}